Dynamic data rectification using particle filters

被引:35
作者
Chen, Tao [1 ]
Morris, Julian [1 ]
Martin, Elaine [1 ]
机构
[1] Newcastle Univ, Sch Chem Engn & Adv Mat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
基金
英国工程与自然科学研究理事会;
关键词
dynamic data rectification; filtering; particle filters; sequential Monte Carlo; state estimation;
D O I
10.1016/j.compchemeng.2007.03.012
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The basis of dynamic data rectification is a dynamic process model. The successful application of the model requires the fulfilling of a number of objectives that are as wide-ranging as the estimation of the process states, process signal denoising and outlier detection and removal. Current approaches to dynamic data rectification include the conjunction of the Extended Kalman Filter (EKF) and the expectation-maximization algorithm. However, this approach is limited due to the EKF being less applicable where the state and measurement functions are highly non-linear or where the posterior distribution of the states is non-Gaussian. This paper proposes an alternative approach whereby particle filters, based on the sequential Monte Carlo method, are utilized for dynamic data rectification. By formulating the rectification problem within a probabilistic framework, the particle filters generate Monte Carlo samples from the posterior distribution of the system states, and thus provide the basis for rectifying the process measurements. Furthermore, the proposed technique is capable of detecting changes in process operation and thus complements the task of process fault diagnosis. The appropriateness of particle filters for dynamic data rectification is demonstrated through their application to an illustrative non-linear dynamic system, and a benchmark pH neutralization process. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:451 / 462
页数:12
相关论文
共 26 条