Improved Binary Grey Wolf Optimizer and Its application for feature selection

被引:268
|
作者
Hu, Pei [1 ,2 ]
Pan, Jeng-Shyang [1 ]
Chu, Shu-Chuan [1 ,3 ]
机构
[1] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao 266590, Peoples R China
[2] Nanyang Inst Technol, Sch Software, Nanyang 473004, Peoples R China
[3] Flinders Univ S Australia, Coll Sci & Engn, Sturt Rd, Bedford Pk, SA 5042, Australia
基金
中国国家自然科学基金;
关键词
Grey Wolf Optimizer; Discrete; Binary; Transfer function; Feature selection; PARTICLE SWARM OPTIMIZATION; FEATURE-EXTRACTION; FUZZY-SETS; ALGORITHM; QUALITY; DESIGN; COMBINATION; PREDICTION; SYSTEM; LOAD;
D O I
10.1016/j.knosys.2020.105746
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Grey Wolf Optimizer (GWO) is a new swarm intelligence algorithm mimicking the behaviours of grey wolves. Its abilities include fast convergence, simplicity and easy realization. It has been proved its superior performance and widely used to optimize the continuous applications, such as, cluster analysis, engineering problem, training neural network and etc. However, there are still some binary problems to optimize in the real world. Since binary can only be taken from values of 0 or 1, the standard GWO is not suitable for the problems of discretization. Binary Grey Wolf Optimizer (BGWO) extends the application of the GWO algorithm and is applied to binary optimization issues. In the position updating equations of BGWO, the a parameter controls the values of A and D, and influences algorithmic exploration and exploitation. This paper analyses the range of values of AD under binary condition and proposes a new updating equation for the a parameter to balance the abilities of global search and local search. Transfer function is an important part of BGWO, which is essential for mapping the continuous value to binary one. This paper includes five transfer functions and focuses on improving their solution quality. Through verifying the benchmark functions, the advanced binary GWO is superior to the original BGWO in the optimality, time consumption and convergence speed. It successfully implements feature selection in the UCI datasets and acquires low classification errors with few features. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Improved dynamic grey wolf optimizer
    Zhang, Xiaoqing
    Zhang, Yuye
    Ming, Zhengfeng
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2021, 22 (06) : 877 - 890
  • [32] Statistically aided Binary Multi-Objective Grey Wolf Optimizer: a new feature selection approach for classification
    Amal Francis V Ukken
    Arjun Bindu Jayachandran
    Jaideep Kumar Punnath Malayathodi
    Pranesh Das
    The Journal of Supercomputing, 2023, 79 : 12869 - 12901
  • [33] MbGWO-SFS: Modified Binary Grey Wolf Optimizer Based on Stochastic Fractal Search for Feature Selection
    El-Kenawy, El-Sayed M.
    Eid, Marwa Metwally
    Saber, Mohamed
    Ibrahim, Abdelhameed
    IEEE ACCESS, 2020, 8 : 107635 - 107649
  • [34] Statistically aided Binary Multi-Objective Grey Wolf Optimizer: a new feature selection approach for classification
    Ukken, Amal Francis, V
    Jayachandran, Arjun Bindu
    Malayathodi, Jaideep Kumar Punnath
    Das, Pranesh
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (12): : 12869 - 12901
  • [35] Feature selection using binary grey wolf optimizer with elite-based crossover for Arabic text classification
    Hamouda Chantar
    Majdi Mafarja
    Hamad Alsawalqah
    Ali Asghar Heidari
    Ibrahim Aljarah
    Hossam Faris
    Neural Computing and Applications, 2020, 32 : 12201 - 12220
  • [36] Feature selection using binary grey wolf optimizer with elite-based crossover for Arabic text classification
    Chantar, Hamouda
    Mafarja, Majdi
    Alsawalqah, Hamad
    Heidari, Ali Asghar
    Aljarah, Ibrahim
    Faris, Hossam
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (16): : 12201 - 12220
  • [37] On the binarization of Grey Wolf optimizer: a novel binary optimizer algorithm
    Mehdy Roayaei
    Soft Computing, 2021, 25 : 14715 - 14728
  • [38] On the binarization of Grey Wolf optimizer: a novel binary optimizer algorithm
    Roayaei, Mehdy
    SOFT COMPUTING, 2021, 25 (23) : 14715 - 14728
  • [39] Explorative Binary Gray Wolf Optimizer with Quadratic Interpolation for Feature Selection
    Zhang, Yijie
    Cai, Yuhang
    BIOMIMETICS, 2024, 9 (10)
  • [40] EEG Channel Selection for Person Identification Using Binary Grey Wolf Optimizer
    Alyasseri, Zaid Abdi Alkareem
    Alomari, Osama Ahmad
    Makhadmeh, Sharif Naser
    Mirjalili, Seyedali
    Al-Betar, Mohammed Azmi
    Abdullah, Salwani
    Ali, Nabeel Salih
    Papa, Joao P.
    Rodrigues, Douglas
    Abasi, Ammar Kamal
    IEEE ACCESS, 2022, 10 : 10500 - 10513