A Ni1-xZnxS/Ni foam composite electrode with multi-layers: one-step synthesis and high supercapacitor performance

被引:52
作者
Wang, Xiaobing [1 ]
Hao, Jin [1 ]
Su, Yichang [1 ]
Liu, Fanggang [1 ]
An, Jian [1 ]
Lian, Jianshe [1 ]
机构
[1] Jilin Univ, Dept Mat Sci & Engn, Key Lab Automobile Mat, Minist Educ, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-ENERGY-DENSITY; AQUEOUS ASYMMETRIC SUPERCAPACITOR; EXCELLENT RATE CAPABILITY; NICKEL FOAM; NI FOAM; ULTRAHIGH CAPACITANCE; ELECTROCHEMICAL CAPACITORS; HYDROXIDE NANOSHEETS; NI3S2; NANOSHEETS; STORAGE DEVICES;
D O I
10.1039/c6ta04022e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Multi-layer NixZn1-xS/Ni foam composites were synthesized by the facile method of a one-step hydrothermal reaction on a frame of Ni foam. The Zn element plays a critical role in constructing the multi-layer nanostructure. In particular, various layers with different morphologies work with good synergistic effect to provide an excellent electrochemical performance. The as-synthesized Ni1-xZnxS/Ni foam-2 h electrode shows a high specific capacitance (1815 F g(-1) at 1 A g(-1)) and outstanding rate properties (1050 F g(-1) at 100 A g(-1) and 50.1% rate retention over 200 A g(-1)). Moreover, a two-electrode Ni1-xZnxS/Ni foam-2 h//active carbon-graphene (AC-G) asymmetric supercapacitor device was fabricated and it delivers both a high specific energy density and an excellent cycling stability. The strategy presented here for constructing multi-layer structures is facile and effective, and could be expanded as a general method.
引用
收藏
页码:12929 / 12939
页数:11
相关论文
共 61 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   Fiber Supercapacitors Made of Nanowire-Fiber Hybrid Structures for Wearable/Flexible Energy Storage [J].
Bae, Joonho ;
Song, Min Kyu ;
Park, Young Jun ;
Kim, Jong Min ;
Liu, Meilin ;
Wang, Zhong Lin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (07) :1683-1687
[3]   Investigation of ZnS passivated InP nanocrystals by XPS [J].
Borchert, H ;
Haubold, S ;
Haase, M ;
Weller, H .
NANO LETTERS, 2002, 2 (02) :151-154
[4]   Ultracapacitors: why, how, and where is the technology [J].
Burke, A .
JOURNAL OF POWER SOURCES, 2000, 91 (01) :37-50
[5]   Nickel- Cobalt Layered Double Hydroxide Nanosheets for High- performance Supercapacitor Electrode Materials [J].
Chen, Hao ;
Hu, Linfeng ;
Chen, Min ;
Yan, Yan ;
Wu, Limin .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (07) :934-942
[6]   A Fe-doped Ni3S2 particle film as a high-efficiency robust oxygen evolution electrode with very high current density [J].
Cheng, Ningyan ;
Liu, Qian ;
Asiri, Abdullah M. ;
Xing, Wei ;
Sun, Xuping .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (46) :23207-23212
[7]   TRANSITION FROM SUPERCAPACITOR TO BATTERY BEHAVIOR IN ELECTROCHEMICAL ENERGY-STORAGE [J].
CONWAY, BE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (06) :1539-1548
[8]   Hierarchically Structured Ni3S2/Carbon Nanotube Composites as High Performance Cathode Materials for Asymmetric Supercapacitors [J].
Dai, Chao-Shuan ;
Chien, Pei-Yi ;
Lin, Jeng-Yu ;
Chou, Shu-Wei ;
Wu, Wen-Kai ;
Li, Ping-Hsuan ;
Wu, Kuan-Yi ;
Lin, Tsung-Wu .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (22) :12168-12174
[9]   Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density [J].
Fan, Zhuangjun ;
Yan, Jun ;
Wei, Tong ;
Zhi, Linjie ;
Ning, Guoqing ;
Li, Tianyou ;
Wei, Fei .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (12) :2366-2375
[10]   Electrochemically Driven Surface-Confined Acid/Base Reaction for an Ultrafast H+ Supercapacitor [J].
Gan, Shiyu ;
Zhong, Lijie ;
Gao, Lifang ;
Han, Dongxue ;
Niu, Li .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (05) :1490-1493