The relationship between incidence coloring and vertex coloring of graphs

被引:0
作者
Wang, Shudong [1 ,2 ]
Yan, Lijun [2 ]
机构
[1] Peking Univ, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Informat Sci & Engn, Qingdao 266510, Peoples R China
来源
DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS | 2007年 / 14卷
关键词
graph; incidence Coloring; incidence chromatic number; vertex coloring; chromatic number;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A k-vertex coloring of G is an assignment from k colors to vertex-set V(G) of G such that any two adjacent vertices have different colors. An incidence coloring of graph G is a mapping from I(G) to color set C such that any two neighborly incidences are assigned to different colors. In this paper, two equivalent definitions of incidence graph are firstly given according to the definitions and properties of incidence coloring and vertex coloring. Based on this, some properties of incidence graph will be discussed, and some relationships shall be given between incidence coloring and vertex coloring.
引用
收藏
页码:917 / 921
页数:5
相关论文
共 50 条
[41]   On incidence coloring conjecture in Cartesian products of graphs [J].
Gregor, Petr ;
Luzar, Borut ;
Sotak, Roman .
DISCRETE APPLIED MATHEMATICS, 2016, 213 :93-100
[42]   Fractional incidence coloring and star arboricity of graphs [J].
Yang, Daqing .
ARS COMBINATORIA, 2012, 105 :213-224
[43]   Incidence coloring of pseudo-Halin graphs [J].
Meng, Xianyong ;
Guo, Jianhua ;
Su, Bentang .
DISCRETE MATHEMATICS, 2012, 312 (22) :3276-3282
[44]   Interval vertex coloring [J].
Macekova, Maria ;
Sarosiova, Zuzana ;
Sotak, Roman .
APPLIED MATHEMATICS AND COMPUTATION, 2024, 470
[45]   The algorithm for adjacent vertex distinguishing proper edge coloring of graphs [J].
Li, Jingwen ;
Hu, Tengyun ;
Wen, Fei .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (04)
[46]   New Concepts on Vertex and Edge Coloring of Simple Vague Graphs [J].
Dey, Arindam ;
Le Hoang Son ;
Kumar, P. K. Kishore ;
Selvachandran, Ganeshsree ;
Quek, Shio Gai .
SYMMETRY-BASEL, 2018, 10 (09)
[47]   Vertex Distinguishing Edge Coloring of Graphs with δ = Δ ≥ n/3 1 [J].
Zhang, Fuxiang ;
Cai, Jiansheng ;
Zhang, Weimei .
UTILITAS MATHEMATICA, 2014, 95 :341-347
[48]   On the Adjacent Vertex-distinguishing Equitable Edge Coloring of Graphs [J].
Jing-wen LI ;
Cong WANG ;
Zhi-wen WANG .
Acta Mathematicae Applicatae Sinica, 2013, (03) :615-622
[49]   Local Super Antimagic Total Labeling for Vertex Coloring of Graphs [J].
Slamin, Slamin ;
Adiwijaya, Nelly Oktavia ;
Hasan, Muhammad Ali ;
Dafik, Dafik ;
Wijaya, Kristiana .
SYMMETRY-BASEL, 2020, 12 (11) :1-17
[50]   Coloring graphs with no induced five-vertex path or gem [J].
Chudnovsky, Maria ;
Karthick, T. ;
Maceli, Peter ;
Maffray, Frederic .
JOURNAL OF GRAPH THEORY, 2020, 95 (04) :527-542