Top-K structural diversity search in large networks

被引:24
作者
Huang, Xin [1 ]
Cheng, Hong [1 ]
Li, Rong-Hua [2 ]
Qin, Lu [3 ]
Yu, Jeffrey Xu [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China
[2] Shenzhen Univ, Guangdong Prov Key Lab Popular High Performance C, Shenzhen, Peoples R China
[3] Univ Technol Sydney, Quantum Computat & Intelligent Syst, Dept Engn & Informat Technol, Sydney, NSW 2007, Australia
基金
芬兰科学院;
关键词
Structural diversity; Disjoint-set forest; A* search; Dynamic graph;
D O I
10.1007/s00778-015-0379-0
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Social contagion depicts a process of information (e.g., fads, opinions, news) diffusion in the online social networks. A recent study reports that in a social contagion process, the probability of contagion is tightly controlled by the number of connected components in an individual's neighborhood. Such a number is termed structural diversity of an individual, and it is shown to be a key predictor in the social contagion process. Based on this, a fundamental issue in a social network is to find top- users with the highest structural diversities. In this paper, we, for the first time, study the top- structural diversity search problem in a large network. Specifically, we study two types of structural diversity measures, namely, component-based structural diversity measure and core-based structural diversity measure. For component-based structural diversity, we develop an effective upper bound of structural diversity for pruning the search space. The upper bound can be incrementally refined in the search process. Based on such upper bound, we propose an efficient framework for top- structural diversity search. To further speed up the structural diversity evaluation in the search process, several carefully devised search strategies are proposed. We also design efficient techniques to handle frequent updates in dynamic networks and maintain the top- results. We further show how the techniques proposed in component-based structural diversity measure can be extended to handle the core-based structural diversity measure. Extensive experimental studies are conducted in real-world large networks and synthetic graphs, and the results demonstrate the efficiency and effectiveness of the proposed methods.
引用
收藏
页码:319 / 343
页数:25
相关论文
共 29 条
[1]  
Agrawal R., 2009, P 2 ACM INT C WEB SE, P5, DOI DOI 10.1145/1498759.1498766
[2]  
Angel A., 2011, SIGMOD, P781, DOI DOI 10.1145/1989323.1989405
[3]  
[Anonymous], 2011, WWW 2011, DOI [DOI 10.1145/1963405.1963503, 10.1145/1963405.1963503]
[4]  
Backstrom Lars, 2006, Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'06, (New York, NY, USA), P44
[5]  
Batagelj V, 2003, OM ALGORITHM CORES D
[6]  
BROOKS G, 1992, SIGPLAN NOTICES, V27, P1, DOI [10.1145/143103.143108, 10.13334/j.0258-8013.pcsee.213043]
[7]  
Chang KevinChen-Chuan., 2002, P ACM INT C MANAGEME, P346
[8]  
Cheng J, 2011, PROC INT CONF DATA, P51, DOI 10.1109/ICDE.2011.5767911
[9]   ARBORICITY AND SUBGRAPH LISTING ALGORITHMS [J].
CHIBA, N ;
NISHIZEKI, T .
SIAM JOURNAL ON COMPUTING, 1985, 14 (01) :210-223
[10]  
Chu Shumo, 2011, P INT C KNOWLEDGE DI, P672, DOI 10.1145/2020408.2020513