Quantum lens spaces and graph algebras

被引:36
作者
Hong, JH
Szymanski, W
机构
[1] Korea Maritime Univ, Pusan 606791, South Korea
[2] Univ Newcastle, Callaghan, NSW 2308, Australia
关键词
C-ASTERISK-ALGEBRAS; CUNTZ-KRIEGER ALGEBRAS; TOPOLOGICAL MARKOV-CHAINS; INFINITE-GRAPHS; DIRECTED-GRAPHS; IDEAL STRUCTURE; CSTAR-ALGEBRAS; SU(2); EXT;
D O I
10.2140/pjm.2003.211.249
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct the C*-algebra C(L-q(p; m(1),..., m(n))) of continuous functions on the quantum lens space as the fixed point algebra for a suitable action of Z(p) on the algebra C(S-q(2n-1)), corresponding to the quantum odd dimensional sphere. We show that C(L-q(p; m(1),..., m(n))) is isomorphic to the graph algebra C*(L-2n-1((p; m1,..., mn))). This allows us to determine the ideal structure and, at least in principle, calculate the K-groups of C(L-q(p; m(1),..., m(n))). Passing to the limit with natural imbeddings of the quantum lens spaces we construct the quantum infinite lens space, or the quantum Eilenberg-MacLane space of type (Z(p), 1).
引用
收藏
页码:249 / 263
页数:15
相关论文
共 27 条
[1]   The ideal structure of the C*-algebras of infinite graphs [J].
Bates, T ;
Hong, JH ;
Raeburn, I ;
Szymanski, W .
ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (04) :1159-1176
[2]  
Bates T., 2000, NEW YORK J MATH, V6, P307
[3]  
Bott R., 1982, GRADUATE TEXTS MATH
[4]   STABLE ISOMORPHISM OF HEREDITARY SUBALGEBRAS OF CSTAR-ALGEBRAS [J].
BROWN, LG .
PACIFIC JOURNAL OF MATHEMATICS, 1977, 71 (02) :335-348
[6]   CLASS OF CSTAR-ALGEBRAS AND TOPOLOGICAL MARKOV-CHAINS [J].
CUNTZ, J ;
KRIEGER, W .
INVENTIONES MATHEMATICAE, 1980, 56 (03) :251-268
[7]   Computing K-theory and Ext for graph C*-algebras [J].
Drinen, D ;
Tomforde, M .
ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (01) :81-91
[8]  
Exel R, 1993, K THEORY, V7, P285
[9]   The C*-algebras of infinite graphs [J].
Fowler, NJ ;
Laca, M ;
Raeburn, I .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (08) :2319-2327
[10]   Quantum spheres and projective spaces as graph algebras [J].
Hong, JH ;
Szymanski, W .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 232 (01) :157-188