Riesz and Tight Wavelet Frame Sets in Locally Compact Abelian Groups

被引:1
作者
Sinha, Arvind Kumar [1 ]
Sahoo, Radhakrushna [1 ]
机构
[1] Natl Inst Technol Raipur, Dept Math, GE Rd, Raipur 492010, Chhatisgarh, India
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2021年 / 61卷 / 02期
关键词
wavelet frame sets; Riesz wavelets; tight wavelet frame sets; translational and multiplicative tilings; spectral set; BASES;
D O I
10.5666/KMJ.2021.61.2.371
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we attempt to obtain sufficient conditions for the existence of tight wavelet frame sets in locally compact abelian groups. The condition is generated by modulating a collection of characteristic functions that correspond to a generalized shift-invariant system via the Fourier transform. We present two approaches (for stationary and non-stationary wavelets) to construct the scaling function for L-2 (G) and, using the scaling function, we construct an orthonormal wavelet basis for L-2 (G). We propose an open problem related to the extension principle for Riesz wavelets in locally compact abelian groups.
引用
收藏
页码:371 / 381
页数:11
相关论文
共 29 条
[1]   Lattice sub-tilings and frames in LCA groups [J].
Barbieri, Davide ;
Hernandez, Eugenio ;
Mayeli, Azita .
COMPTES RENDUS MATHEMATIQUE, 2017, 355 (02) :193-199
[2]   A wavelet theory for local fields and related groups [J].
Benedetto, JJ ;
Benedetto, RL .
JOURNAL OF GEOMETRIC ANALYSIS, 2004, 14 (03) :423-456
[3]  
Benedetto JohnJ., 1999, FUNCTIONAL HARMONIC, V247, P43
[4]   Riesz wavelets and generalized multiresolution analyses [J].
Bownik, M .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2003, 14 (03) :181-194
[5]  
Bownik M., 2015, Excursions in harmonic analysis, V4, P103
[6]   ON WILSON BASES IN L2(Rd) [J].
Bownik, Marcin ;
Jakobsen, Mads S. ;
Lemvig, Jakob ;
Okoudjoul, Kasso A. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (05) :3999-4023
[7]   On the splitting trick and wavelet frame packets [J].
Chen, DR .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (04) :726-739
[8]   Gabor fields and wavelet sets for the Heisenberg group [J].
Currey, Bradley ;
Mayeli, Azita .
MONATSHEFTE FUR MATHEMATIK, 2011, 162 (02) :119-142
[9]   PAINLESS NONORTHOGONAL EXPANSIONS [J].
DAUBECHIES, I ;
GROSSMANN, A ;
MEYER, Y .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) :1271-1283
[10]   A CLASS OF NONHARMONIC FOURIER SERIES [J].
DUFFIN, RJ ;
SCHAEFFER, AC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 72 (MAR) :341-366