THE CLASSIFICATION OF NATURALLY GRADED p-FILIFORM LEIBNIZ ALGEBRAS

被引:19
作者
Camacho, L. M. [1 ]
Gomez, J. R. [1 ]
Gonzalez, A. J. [2 ]
Omirov, B. A.
机构
[1] Univ Seville, Dept Matemat Aplicada 1, Seville, Spain
[2] Univ Extremadura, Dept Matemat, Badajoz, Spain
关键词
Characteristic sequence; Leibniz algebra; Lie algebra; Natural gradation; Nilpotence; p-Filiformlicity; LIE-ALGEBRAS; DIMENSION;
D O I
10.1080/00927870903451900
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present article the classification of n-dimensional naturally graded p-filiform (1 <= p <= n - 4) Leibniz algebras is obtained. A splitting of the set of naturally graded Leibniz algebras into the families of Lie and non Lie Leibniz algebras by means of characteristic sequences (isomorphism invariants) is proved.
引用
收藏
页码:153 / 168
页数:16
相关论文
共 10 条
[1]   Varieties of nilpotent complex Leibniz algebras of dimension less than five# [J].
Albeverio, S ;
Omirov, BA ;
Rakhimov, IS .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (05) :1575-1585
[2]  
AYUPOV SA, 2001, SIBERIAN MATH J, V42, P18
[3]  
Cabezas JM, 2005, J LIE THEORY, V15, P379
[4]   NATURALLY GRADED 2-FILIFORM LEIBNIZ ALGEBRAS [J].
Camacho, L. M. ;
Gomez, J. R. ;
Gonzalez, A. J. ;
Omirov, B. A. .
COMMUNICATIONS IN ALGEBRA, 2010, 38 (10) :3671-3685
[5]   Non-abelian tensor product of Leibniz algebras and an exact sequence in Leibniz homology [J].
Casas, JM ;
Ladra, M .
COMMUNICATIONS IN ALGEBRA, 2003, 31 (09) :4639-4646
[6]   Versal Deformations of Leibniz Algebras [J].
Fialowski, Alice ;
Mandal, Ashis ;
Mukherjee, Goutam .
JOURNAL OF K-THEORY, 2009, 3 (02) :327-358
[7]  
Goze M., 1996, MATH ITS APPL, V361
[8]  
Loday J.-L., 1993, ENSEIGN MATH, V39, P269
[9]   Leibniz representations of Lie algebras [J].
Loday, JL ;
Pirashvili, T .
JOURNAL OF ALGEBRA, 1996, 181 (02) :414-425
[10]  
VERGNE M, 1970, B SOC MATH FR, V98, P81