Superconductivity in domains with corners

被引:31
作者
Bonnaillie-Noel, V. [1 ]
Fournais, S. [2 ]
机构
[1] Univ Rennes 1, CNRS, ENS Cachan Bretagne, IRMAR,UEB, F-35014 Rennes, France
[2] Aarhus Univ, Dept Math Sci, DK-8000 Aarhus, Denmark
关键词
Ginzburg-Landau; critical field; asymptotic expansion; domains with corners;
D O I
10.1142/S0129055X07003061
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the two-dimensional Ginzburg-Landau functional in a domain with corners for exterior magnetic field strengths near the critical field where the transition from the superconducting to the normal state occurs. We discuss and clarify the definition of this field and obtain a complete asymptotic expansion for it in the large. regime. Furthermore, we discuss nucleation of superconductivity at the boundary.
引用
收藏
页码:607 / 637
页数:31
相关论文
共 31 条
[1]  
AGMON S, 1989, LECT EXPONENTIAL DEC
[2]   Numerical computations of fundamental eigenstates for the Schrodinger operator under constant magnetic field [J].
Alouges, Francois ;
Bonnaillie-Noel, Virginie .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2006, 22 (05) :1090-1105
[3]   Onset of superconductivity in decreasing fields for general domains [J].
Bernoff, A ;
Sternberg, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (03) :1272-1284
[4]  
Bonnaillie V, 2005, ASYMPTOTIC ANAL, V41, P215
[5]  
BONNAILLIE V, 2003, HTESIS U PARIS, P11
[6]   Asymptotics for the low-lying eigenstates of the Schrodinger operator with magnetic field near corners [J].
Bonnaillie-Noel, Virginie ;
Dauge, Monique .
ANNALES HENRI POINCARE, 2006, 7 (05) :899-931
[7]  
BONNAILLINOEL V, 2007, IN PRESS COMPUT METH
[8]   Boundary concentration for eigenvalue problems related to the onset of superconductivity [J].
del Pino, M ;
Felmer, PL ;
Sternberg, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 210 (02) :413-446
[9]   ANALYSIS AND APPROXIMATION OF THE GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY [J].
DU, Q ;
GUNZBURGER, MD ;
PETERSON, JS .
SIAM REVIEW, 1992, 34 (01) :54-81
[10]   On the third critical field in Ginzburg-Landau theory [J].
Fournais, S. ;
Helffer, B. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 266 (01) :153-196