DiaDeL: An Accurate Deep Learning-Based Model With Mutational Signatures for Predicting Metastasis Stage and Cancer Types

被引:1
作者
Abdollahi, Sina [1 ]
Lin, Peng-Chan [2 ]
Chiang, Jung-Hsien [3 ,4 ]
机构
[1] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan 701, Taiwan
[2] Natl Cheng Kung Univ, Inst Med Informat, Dept Internal Med & Oncol, Tainan 701, Taiwan
[3] Natl Cheng Kung Univ Hosp, Dept Comp Sci & Informat Engn, Tainan 704, Taiwan
[4] Natl Cheng Kung Univ, Tainan 701, Taiwan
关键词
Cancer; Feature extraction; Melanoma; Genomics; Bioinformatics; Statistics; Sociology; Mutational signatures; deep learning; classification; cancer-associated genes; VARIANTS;
D O I
10.1109/TCBB.2021.3115504
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Mutational signatures help identify cancer-associated genes that are being involved in tumorigenesis pathways. Hence, these pathways guide precision medicine approaches to find appropriate drugs and treatments. The pattern of mutations varies in different cancer types. Some mutations dysregulate protein function so that their accumulation is responsible for cancer development and might be associated with different cancer types. Therefore, mutations as a feature set can be used as an informative candidate to distinguish various cancer types. There are several options for demonstrating mutations. One might employ binary values to demonstrate mutation regions. Another potential method for extracting features is utilizing mutation interpreters. In this study, we investigate the trinucleotide mutational pattern of each cancer type. Moreover, we extract salient NMF-based mutational signatures across various cancer types. Then, we identify cancer-associated genes of a target cancer based on its salient signatures. We evaluate the cancer-associated genes using survival and gene expression analysis in different stages of cancer. Furthermore, we introduce DiaDeL, which is a deep learning-based binary classifier. The DiaDeL model uses mutational signatures as input features and distinct a cancer type from the others. Our proposed model outperforms six state-of-the-art methods with 0.824 and 0.88 for accuracy and AUC, respectively. The source code is available at https://github.com/sabdollahi/DiaDeL.
引用
收藏
页码:1336 / 1343
页数:8
相关论文
共 22 条
  • [1] Precise uncertain significance prediction using latent space matrix factorization models: genomics variant and heterogeneous clinical data-driven approaches
    Abdollahi, Sina
    Lin, Peng-Chan
    Shen, Meng-Ru
    Chiang, Jung-Hsien
    [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22 (04)
  • [2] The repertoire of mutational signatures in human cancer
    Alexandrov, Ludmil B.
    Kim, Jaegil
    Haradhvala, Nicholas J.
    Huang, Mi Ni
    Ng, Alvin Wei Tian
    Wu, Yang
    Boot, Arnoud
    Covington, Kyle R.
    Gordenin, Dmitry A.
    Bergstrom, Erik N.
    Islam, S. M. Ashiqul
    Lopez-Bigas, Nuria
    Klimczak, Leszek J.
    McPherson, John R.
    Morganella, Sandro
    Sabarinathan, Radhakrishnan
    Wheeler, David A.
    Mustonen, Ville
    Getz, Gad
    Rozen, Steven G.
    Stratton, Michael R.
    [J]. NATURE, 2020, 578 (7793) : 94 - +
  • [3] Deciphering Signatures of Mutational Processes Operative in Human Cancer
    Alexandrov, Ludmil B.
    Nik-Zainal, Serena
    Wedge, David C.
    Campbell, Peter J.
    Stratton, Michael R.
    [J]. CELL REPORTS, 2013, 3 (01): : 246 - 259
  • [4] De novo prediction of cancer-associated T cell receptors for noninvasive cancer detection
    Beshnova, Daria
    Ye, Jianfeng
    Onabolu, Oreoluwa
    Moon, Benjamin
    Zheng, Wenxin
    Fu, Yang-Xin
    Brugarolas, James
    Lea, Jayanthi
    Li, Bo
    [J]. SCIENCE TRANSLATIONAL MEDICINE, 2020, 12 (557)
  • [5] UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses
    Chandrashekar, Darshan S.
    Bashel, Bhuwan
    Balasubramanya, Sai Akshaya Hodigere
    Creighton, Chad J.
    Ponce-Rodriguez, Israel
    Chakravarthi, Balabhadrapatruni V. S. K.
    Varambally, Sooryanarayana
    [J]. NEOPLASIA, 2017, 19 (08): : 649 - 658
  • [6] The mutational signatures and molecular alterations of bladder cancer
    Ju, Young Seok
    [J]. TRANSLATIONAL CANCER RESEARCH, 2017, 6 : S689 - S701
  • [7] Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm
    Kumar, Prateek
    Henikoff, Steven
    Ng, Pauline C.
    [J]. NATURE PROTOCOLS, 2009, 4 (07) : 1073 - 1082
  • [8] ClinVar: public archive of interpretations of clinically relevant variants
    Landrum, Melissa J.
    Lee, Jennifer M.
    Benson, Mark
    Brown, Garth
    Chao, Chen
    Chitipiralla, Shanmuga
    Gu, Baoshan
    Hart, Jennifer
    Hoffman, Douglas
    Hoover, Jeffrey
    Jang, Wonhee
    Katz, Kenneth
    Ovetsky, Michael
    Riley, George
    Sethi, Amanjeev
    Tully, Ray
    Villamarin-Salomon, Ricardo
    Rubinstein, Wendy
    Maglott, Donna R.
    [J]. NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) : D862 - D868
  • [9] Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis
    Letouze, Eric
    Shinde, Jayendra
    Renault, Victor
    Couchy, Gabrielle
    Blanc, Jean-Frederic
    Tubacher, Emmanuel
    Bayard, Quentin
    Bacq, Delphine
    Meyer, Vincent
    Semhoun, Jeremy
    Bioulac-Sage, Paulette
    Prevot, Sophie
    Azoulay, Daniel
    Paradis, Valerie
    Imbeaud, Sandrine
    Deleuze, Jean-Francois
    Zucman-Rossi, Jessica
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [10] InterVar: Clinical Interpretation of Genetic Variants by the 2015 ACMG-AMP Guidelines
    Li, Quan
    Wang, Kai
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2017, 100 (02) : 267 - 280