LiDAR point cloud and ICESat-2 evaluation of 1 second global digital elevation models: Copernicus wins

被引:94
作者
Guth, Peter L. [1 ]
Geoffroy, Tera M. [1 ]
机构
[1] United States Naval Acad, Dept Oceanog, 572C Holloway Rd, Annapolis, MD 21402 USA
关键词
SRTM; DEMS;
D O I
10.1111/tgis.12825
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
Widely available LiDAR point clouds show that the Copernicus digital elevation model (DEM) consistently outperforms four other 1" (arc second) global DEMs (ALOS, ASTER, NASA, and SRTM). Typical airborne LiDARs have 2-20 returns per square meter, or 1,500-10,000 points corresponding to each elevation posting in a 1 '' DEM. The LiDAR point cloud approximates the 3D earth surface observed by visible, near-infrared, and radar sensors used to create freely available global DEMs, and allows estimation of the canopy penetration by the sensor. Canopy is broadly defined as the range of elevations within the 1 '' cell including effects from vegetation, slope, and human-made features. In open terrain, all five DEMs approximate the ground surface. With significant canopy, the Copernicus DEM elevations cluster tightly near the center of the canopy, while the other DEMs are spread throughout and even outside the canopy defined by LiDAR. The superiority of the Copernicus DEM is evident in tests against both LiDAR and ICESat-2 data, in all eight (high-relief) test areas, in different vegetation types, and on both gentle and steep slopes.
引用
收藏
页码:2245 / 2261
页数:17
相关论文
共 21 条
[1]  
Abrams M, 2010, PHOTOGRAMM ENG REM S, V76, P344
[2]  
AIRBUS, 2020, COP DEM COP DIG EL M
[3]   Geomorpho90m, empirical evaluation and accuracy assessment of global high-resolution geomorphometric layers [J].
Amatulli, Giuseppe ;
McInerney, Daniel ;
Sethi, Tushar ;
Strobl, Peter ;
Domisch, Sami .
SCIENTIFIC DATA, 2020, 7 (01)
[4]  
[Anonymous], 2011, GEOMORPHOMETRY 2011
[5]  
Buchhorn M., 2020, Copernicus Global Land Service: Land Cover 100 m: Version 3 Globe 2015-2019: Product User Manual
[6]   Copernicus Global Land Cover Layers-Collection 2 [J].
Buchhorn, Marcel ;
Lesiv, Myroslava ;
Tsendbazar, Nandin-Erdene ;
Herold, Martin ;
Bertels, Luc ;
Smets, Bruno .
REMOTE SENSING, 2020, 12 (06)
[7]  
Carabajal C.C., 2020, ISPRS Int. Arch. Photogrammetry, Remote Sens. Spatial Inf. Sci., V43, P1299
[8]   NASADEM GLOBAL ELEVATION MODEL: METHODS AND PROGRESS [J].
Crippen, R. ;
Buckley, S. ;
Agram, P. ;
Belz, E. ;
Gurrola, E. ;
Hensley, S. ;
Kobrick, M. ;
Lavalle, M. ;
Martin, J. ;
Neumann, M. ;
Nguyen, Q. ;
Rosen, P. ;
Shimada, J. ;
Simard, M. ;
Tung, W. .
XXIII ISPRS Congress, Commission IV, 2016, 41 (B4) :125-128
[9]  
Evans I., 1999, Process Modelling and Landform Evolution. Lecture Notes in Earth Sciences, V78, P13, DOI DOI 10.1007/BFB0009718
[10]   The shuttle radar topography mission [J].
Farr, Tom G. ;
Rosen, Paul A. ;
Caro, Edward ;
Crippen, Robert ;
Duren, Riley ;
Hensley, Scott ;
Kobrick, Michael ;
Paller, Mimi ;
Rodriguez, Ernesto ;
Roth, Ladislav ;
Seal, David ;
Shaffer, Scott ;
Shimada, Joanne ;
Umland, Jeffrey ;
Werner, Marian ;
Oskin, Michael ;
Burbank, Douglas ;
Alsdorf, Douglas .
REVIEWS OF GEOPHYSICS, 2007, 45 (02)