On the approximation of the quadratic exponential distribution in a latent variable context

被引:4
作者
Bartolucci, Francesco [1 ]
Pennoni, Fulvia
机构
[1] Univ Perugia, Dept Econ Finance & Stat, I-06123 Perugia, Italy
[2] Univ Milan, Dept Stat, I-20126 Milan, Italy
关键词
approximate maximum likelihood; estimation; item response theory; rasch model; two-parameter; logistic model;
D O I
10.1093/biomet/asm045
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Following Cox & Wermuth ( 1994, 2002), we show that the distribution of a set of binary observable variables, induced by a certain discrete latent variable model, may be approximated by a quadratic exponential distribution. This discrete latent variable model is equivalent to the latent-class version of the two-parameter logistic model of Birnbaum ( 1968), which may be seen as a generalized version of the Rasch model ( Rasch, 1960, 1961). On the basis of this result, we develop an approximate maximum likelihood estimator of the item parameters of the two-parameter logistic model which is very simply implemented. The proposed approach is illustrated through an example based on a dataset on educational assessment.
引用
收藏
页码:745 / 754
页数:10
相关论文
共 21 条
[1]  
Akaike H., 1973, 2 INT S INFORM THEOR, P267, DOI [DOI 10.1007/978-1-4612-1694-0_15, 10.1007/978-1-4612-1694-0_15]
[2]  
ANDERSEN EB, 1970, J ROY STAT SOC B, V32, P283
[3]   Log-multiplicative association models as latent variable models for nominal and/or ordinal data [J].
Anderson, CJ ;
Vermunt, JK .
SOCIOLOGICAL METHODOLOGY 2000, VOL 30, 2000, 30 :81-121
[4]  
[Anonymous], [No title captured]
[5]   Likelihood inference on the underlying structure of IRT models [J].
Bartolucci, F ;
Forcina, A .
PSYCHOMETRIKA, 2005, 70 (01) :31-43
[6]   A class of multidimensional IRT models for testing unidimensionality and clustering items [J].
Bartolucci, Francesco .
PSYCHOMETRIKA, 2007, 72 (02) :141-157
[7]  
Birnbaum A., 1968, Statistical theories of mental test scores
[8]  
BOCK RD, 1970, PSYCHOMETRIKA, V35, P179
[9]   MARGINAL MAXIMUM-LIKELIHOOD ESTIMATION OF ITEM PARAMETERS - APPLICATION OF AN EM ALGORITHM [J].
BOCK, RD ;
AITKIN, M .
PSYCHOMETRIKA, 1981, 46 (04) :443-459
[10]  
COX DR, 1972, J ROY STAT SOC C-APP, V21, P113, DOI 10.2307/2346482