Fracture of 3D-printed polymers: Crucial role of filament-scale geometric features

被引:49
作者
Allum, James [1 ]
Gleadall, Andrew [1 ]
Silberschmidt, Vadim V. [1 ]
机构
[1] Loughborough Univ, Wolfson Sch Mech Elect & Mfg Engn, Loughborough LE11 3TU, Leics, England
关键词
Additive Manufacturing; Fused Deposition Modelling; Interface; Bond Strength; Mechanical Properties; MECHANICAL-PROPERTIES; BOND STRENGTH; PROPERTY; BEHAVIOR; ABS; FDM; RESISTANCE; TENSILE;
D O I
10.1016/j.engfracmech.2019.106818
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Is mechanical anisotropy in extrusion-based 3D-printed parts caused by weak inter-filament bonding, as is widely accepted? This study demonstrates that filament-scale geometric features may be a more important factor than filament bonding. Specially designed 3D-printed compact tension specimens were tested normal to, and along, the direction of extruded filaments. Higher strength and toughness were found in the filament direction. These differences disappeared when small grooves, comparable to micro-features, were introduced in specimens tested along the former direction to replicate grooves that naturally occur between filaments/layers. Mechanical testing and fractography demonstrate that filament-scale geometric stress raisers are critically important and cause anisotropy in 3D-printed materials.
引用
收藏
页数:14
相关论文
共 40 条
[1]   Process-structure-property effects on ABS bond strength in fused filament fabrication [J].
Abbott, A. C. ;
Tandon, G. P. ;
Bradford, R. L. ;
Koerner, H. ;
Baur, J. W. .
ADDITIVE MANUFACTURING, 2018, 19 :29-38
[2]   Anisotropic material properties of fused deposition modeling ABS [J].
Ahn, SH ;
Montero, M ;
Odell, D ;
Roundy, S ;
Wright, PK .
RAPID PROTOTYPING JOURNAL, 2002, 8 (04) :248-257
[3]   Interlayer adhesion and fracture resistance of polymers printed through melt extrusion additive manufacturing process [J].
Aliheidari, Nahal ;
Christ, Josef ;
Tripuraneni, Rajasekhar ;
Nadimpalli, Siva ;
Ameli, Amir .
MATERIALS & DESIGN, 2018, 156 :351-361
[4]  
[Anonymous], 2003, ASTM INT, V08, P46
[5]   Orthopaedic applications for PLA-PGA biodegradable polymers [J].
Athanasiou, KA ;
Agrawal, CM ;
Barber, FA ;
Burkhart, SS .
ARTHROSCOPY-THE JOURNAL OF ARTHROSCOPIC AND RELATED SURGERY, 1998, 14 (07) :726-737
[6]  
Bellehumeur C., 2004, Journal of Manufacturing Processes, V6, P170, DOI [DOI 10.1016/S1526-6125(04)70071-7, 10.1016/S1526-6125(04)70071-7]
[7]   Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection [J].
Chacon, J. M. ;
Caminero, M. A. ;
Garcia-Plaza, E. ;
Nunez, P. J. .
MATERIALS & DESIGN, 2017, 124 :143-157
[8]  
Christiyan K. G. J., 2016, IOP C SER MAT SCI EN, V114, P1
[9]   Healing simulation for bond strength prediction of FDM [J].
Coogan, Timothy J. ;
Kazmer, David O. .
RAPID PROTOTYPING JOURNAL, 2017, 23 (03) :551-561
[10]   Bond and part strength in fused deposition modeling [J].
Coogan, Timothy J. ;
Kazmer, David Owen .
RAPID PROTOTYPING JOURNAL, 2017, 23 (02) :414-422