High-temperature performance of non-polar (11-20) InGaN quantum dots grown by a quasi-two-temperature method

被引:4
作者
Wang, Tong [1 ]
Puchtler, Tim J. [1 ]
Zhu, Tongtong [2 ]
Jarman, John C. [2 ]
Oliver, Rachel A. [2 ]
Taylor, Robert A. [1 ]
机构
[1] Univ Oxford, Dept Phys, Parks Rd, Oxford OX1 3PU, England
[2] Univ Cambridge, Dept Mat Sci & Met, 27 Charles Babbage Rd, Cambridge CB3 0FS, England
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2017年 / 254卷 / 08期
基金
英国工程与自然科学研究理事会;
关键词
growth; InGaN; microphotoluminescence; non-polar surfaces; quantum dots; SINGLE-PHOTON SOURCE; ROOM-TEMPERATURE; SOLID-STATE; INDISTINGUISHABILITY; DEMAND;
D O I
10.1002/pssb.201600724
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Non-polar (11-20) a-plane InGaN quantum dots (QDs) are one of the strongest candidates to achieve on-chip applications of polarised single photon sources, which require a minimum operation temperature of similar to 200K under thermoelectrically cooled conditions. In order to further improve the material quality and optical properties of a-plane InGaN QDs, a quasi-two-temperature (Q2T) method has been developed, producing much smoother underlying InGaN quantum well than the previous modified droplet epitaxy (MDE) method. In this work, we compare the emission features of QDs grown by these two methods at temperatures up to 200K. Both fabrications methods are shown to be able to produce QDs emitting around the thermoelectric cooling barrier. The sample fabricated by the new Q2T method demonstrates more stable operation, with an order of magnitude higher intensity at 200K comparing to the comparable QDs grown by MDE. A detailed discussion of the possible mechanisms that result in this advantage of slower thermal quenching is presented. The use of this alternative fabrication method hence promises more reliable operation at temperatures even higher than the thermoelectric cooling threshold, and facilitates the on-going development of high temperature polarised single photon sources based on a-plane InGaN QDs.
引用
收藏
页数:6
相关论文
共 30 条
[1]  
Biovannetti V., 2004, SCIENCE, V306, P1330
[2]  
Castelletto S, 2014, NAT MATER, V13, P151, DOI [10.1038/nmat3806, 10.1038/NMAT3806]
[3]   A highly efficient single-photon source based on a quantum dot in a photonic nanowire [J].
Claudon, Julien ;
Bleuse, Joel ;
Malik, Nitin Singh ;
Bazin, Maela ;
Jaffrennou, Perine ;
Gregersen, Niels ;
Sauvan, Christophe ;
Lalanne, Philippe ;
Gerard, Jean-Michel .
NATURE PHOTONICS, 2010, 4 (03) :174-177
[4]   Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot [J].
Deshpande, Saniya ;
Frost, Thomas ;
Hazari, Arnab ;
Bhattacharya, Pallab .
APPLIED PHYSICS LETTERS, 2014, 105 (14)
[5]   Blue single photon emission up to 200K from an InGaN quantum dot in AlGaN nanowire [J].
Deshpande, Saniya ;
Das, Ayan ;
Bhattacharya, Pallab .
APPLIED PHYSICS LETTERS, 2013, 102 (16)
[6]   On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar [J].
Ding, Xing ;
He, Yu ;
Duan, Z. -C. ;
Gregersen, Niels ;
Chen, M. -C. ;
Unsleber, S. ;
Maier, S. ;
Schneider, Christian ;
Kamp, Martin ;
Hoefling, Sven ;
Lu, Chao-Yang ;
Pan, Jian-Wei .
PHYSICAL REVIEW LETTERS, 2016, 116 (02)
[7]   Bright solid-state sources of indistinguishable single photons [J].
Gazzano, O. ;
de Vasconcellos, S. Michaelis ;
Arnold, C. ;
Nowak, A. ;
Galopin, E. ;
Sagnes, I. ;
Lanco, L. ;
Lemaitre, A. ;
Senellart, P. .
NATURE COMMUNICATIONS, 2013, 4
[8]   Growth of non-polar (11-20) InGaN quantum dots by metal organic vapour phase epitaxy using a two temperature method [J].
Griffiths, J. T. ;
Zhu, T. ;
Oehler, F. ;
Emery, R. M. ;
Fu, W. Y. ;
Reid, B. P. L. ;
Taylor, R. A. ;
Kappers, M. J. ;
Humphreys, C. J. ;
Oliver, R. A. .
APL MATERIALS, 2014, 2 (12)
[9]  
He YM, 2013, NAT NANOTECHNOL, V8, P213, DOI [10.1038/nnano.2012.262, 10.1038/NNANO.2012.262]
[10]   Single Photons from a Hot Solid-State Emitter at 350 K [J].
Holmes, Mark J. ;
Kako, Satoshi ;
Choi, Kihyun ;
Arita, Munetaka ;
Arakawa, Yasuhiko .
ACS PHOTONICS, 2016, 3 (04) :543-546