Weighted decay properties for the incompressible Stokes flow and Navier-Stokes equations in a half space

被引:17
|
作者
Han, Pigong [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
关键词
Stokes flow; Navier-Stokes equations; Strong solution; Decay rate; Solution formula; ASYMPTOTIC-BEHAVIOR; SPATIAL DECAYS; L-1;
D O I
10.1016/j.jde.2012.06.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the Stokes solution formula and L-q-L-r estimates of the Stokes operator semigroup, we establish the weighted decay properties for the Stokes flow and Navier-Stokes equations including their spatial derivatives in half spaces. In addition, the unboundedness of the projection operator P: L-infinity(R-+(n)) -> L-sigma(infinity)(R-+(n)) is overcome by employing a decomposition for the nonlinear term, and L asymptotic behavior for the second derivatives. of Navier-Stokes flows in half spaces is given. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1744 / 1778
页数:35
相关论文
共 50 条
  • [21] Localized smoothing and concentration for the Navier-Stokes equations in the half space
    Albritton, Dallas
    Barker, Tobias
    Prange, Christophe
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 284 (01)
  • [22] MULTILEVEL BDDC FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    Hanek, Martin
    Sistek, Jakub
    Burda, Pavel
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (06) : C359 - C383
  • [23] Algebraic splitting for incompressible Navier-Stokes equations
    Henriksen, MO
    Holmen, J
    JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 175 (02) : 438 - 453
  • [24] PERIODIC SOLUTIONS AND THEIR STABILITY TO THE NAVIER-STOKES EQUATIONS ON A HALF SPACE
    Hieber, Matthias
    Nguyen, Thieu Huy
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (5-6): : 1899 - 1910
  • [25] Navier-Stokes Equations in the Half Space with Non Compatible Data
    Argenziano, Andrea
    Cannone, Marco
    Sammartino, Marco
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2024, 26 (02)
  • [26] POINTWISE WAVE BEHAVIOR OF THE NAVIER-STOKES EQUATIONS IN HALF SPACE
    Du, Linglong
    Wang, Haitao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (03) : 1349 - 1363
  • [27] On the weighted decay for solutions of the Navier-Stokes system
    Kukavica, Igor
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (06) : 2466 - 2470
  • [28] Decay properties of solutions to the incompressible magnetohydrodynamics equations in a half space
    Han, Pigong
    He, Cheng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (12) : 1472 - 1488
  • [29] Flow Representation of the Navier-Stokes Equations in Weighted Sobolev Spaces
    Sirisubtawee, Sekson
    Manitcharoen, Naowarat
    Saksurakan, Chukiat
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2025, 23
  • [30] HHO Methods for the Incompressible Navier-Stokes and the Incompressible Euler Equations
    Botti, Lorenzo
    Massa, Francesco Carlo
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (01)