Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications

被引:51
作者
Moura, Duarte [1 ,2 ,3 ]
Mano, Joao F. [1 ,2 ]
Paiva, Maria C. [3 ]
Alves, Natlia M. [1 ,2 ]
机构
[1] Univ Minho, Headquarters European Inst Excellence Tissue Engn, 3Bs Res Grp Biomat Biodegradables & Biomimet, Guimaraes, Portugal
[2] ICVS 3Bs, Associate PT Govt Lab Braga, Guimaraes, Portugal
[3] Univ Minho, Inst Polymers & Composites I3 N, Dept Polymer Engn, Guimaraes, Portugal
关键词
Chitosan; polymer nanocomposites; biomedical applications; WALLED CARBON NANOTUBES; IN-VITRO CHARACTERIZATION; REDUCED GRAPHENE OXIDE; MECHANICAL-PROPERTIES; SILICATE NANOCOMPOSITES; THERMAL-CONDUCTIVITY; DRUG-DELIVERY; ELECTROCHEMICAL DETECTION; POLYMER NANOCOMPOSITES; COMPOSITE-MATERIALS;
D O I
10.1080/14686996.2016.1229104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Chitosan (CHI), a biocompatible and biodegradable polysaccharide with the ability to provide a non-protein matrix for tissue growth, is considered to be an ideal material in the biomedical field. However, the lack of good mechanical properties limits its applications. In order to overcome this drawback, CHI has been combined with different polymers and fillers, leading to a variety of chitosan-based nanocomposites. The extensive research on CHI nanocomposites as well as their main biomedical applications are reviewed in this paper. An overview of the different fillers and assembly techniques available to produce CHI nanocomposites is presented. Finally, the properties of such nanocomposites are discussed with particular focus on bone regeneration, drug delivery, wound healing and biosensing applications. [GRAPHICS]
引用
收藏
页码:626 / 643
页数:18
相关论文
共 193 条
[21]   Prospects and Challenges of Graphene in Biomedical Applications [J].
Bitounis, Dimitrios ;
Ali-Boucetta, Hanene ;
Hong, Byung Hee ;
Min, Dal-Hee ;
Kostarelos, Kostas .
ADVANCED MATERIALS, 2013, 25 (16) :2258-2268
[22]   Polymer/bioactive glass nanocomposites for biomedical applications: A review [J].
Boccaccini, Aldo R. ;
Erol, Melek ;
Stark, Wendelin J. ;
Mohn, Dirk ;
Hong, Zhongkui ;
Mano, Joao F. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (13) :1764-1776
[23]  
Boccaccini AldoR., 2014, TISSUE ENG USING CER
[24]   Layer-by-Layer Assembly of Light-Responsive Polymeric Multilayer Systems [J].
Borges, Joao ;
Rodrigues, Luisa C. ;
Reis, Rui L. ;
Mano, Joao F. .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (36) :5624-5648
[25]   Molecular Interactions Driving the Layer-by-Layer Assembly of Multilayers [J].
Borges, Joao ;
Mano, Joao F. .
CHEMICAL REVIEWS, 2014, 114 (18) :8883-8942
[26]   Free-Standing Polyelectrolyte Membranes Made of Chitosan and Alginate [J].
Caridade, Sofia G. ;
Monge, Claire ;
Gilde, Flora ;
Boudou, Thomas ;
Mano, Joao F. ;
Picart, Catherine .
BIOMACROMOLECULES, 2013, 14 (05) :1653-1660
[27]   Chitosan membranes containing micro or nano-size bioactive glass particles: evolution of biomineralization followed by in situ dynamic mechanical analysis [J].
Caridade, Sofia G. ;
Merino, Esther G. ;
Alves, Natalia M. ;
Bermudez, Veronica de Zea ;
Boccaccini, Aldo R. ;
Mano, Joao F. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2013, 20 :173-183
[28]   Bioactivity and Viscoelastic Characterization of Chitosan/Bioglass® Composite Membranes [J].
Caridade, Sofia G. ;
Merino, Esther G. ;
Alves, Natalia M. ;
Mano, Joao F. .
MACROMOLECULAR BIOSCIENCE, 2012, 12 (08) :1106-1113
[29]   Collagen-Based Fibrillar Multilayer Films Cross-Linked by a Natural Agent [J].
Chaubaroux, Christophe ;
Vrana, Engin ;
Debry, Christian ;
Schaaf, Pierre ;
Senger, Bernard ;
Voegel, Jean-Claude ;
Haikel, Youssef ;
Ringwald, Christian ;
Hemmerle, Joseph ;
Lavalle, Philippe ;
Boulmedais, Fouzia .
BIOMACROMOLECULES, 2012, 13 (07) :2128-2135
[30]   Thermal conductivity of carbon nanotubes [J].
Che, JW ;
Çagin, T ;
Goddard, WA .
NANOTECHNOLOGY, 2000, 11 (02) :65-69