A Thermoelectric Energy Harvesting Scheme with Passive Cooling for Outdoor IoT Sensors

被引:18
作者
Charris, Daniela [1 ]
Gomez, Diego [1 ]
Rincon Ortega, Angie [2 ]
Carmona, Mauricio [2 ]
Pardo, Mauricio [1 ]
机构
[1] Univ Norte, Robot & Intelligent Syst Res Grp, Barranquilla 8600, Atlantico, Colombia
[2] Univ Norte, Rat Use Energy & Environm Preservat Res Grp, Barranquilla 8600, Atlantico, Colombia
关键词
internet of things; outdoor sensor; passive cooling; phase change material; thermoelectric energy harvesting; thermoelectric generator; POWER POINT TRACKING; STORAGE-SYSTEMS; MPPT TECHNIQUES; DESIGN; HEAT; CONVERTER;
D O I
10.3390/en13112782
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents an energetically autonomous IoT sensor powered via thermoelectric harvesting. The operation of thermal harvesting is based on maintaining a temperature gradient of at least 26.31 K between the thermoelectric-generator sides. While the hot side employs a metal plate, the cold side is attached with a phase-change material acting as an effective passive dissipative material. The desired temperature gradient allows claiming power conversion efficiencies of about 26.43%, without efficiency reductions associated with heating and soiling. This work presents the characterization of a low-cost off-the-shelf thermoelectric generator that allows estimating the production of at least 407.3 mW corresponding to 2.44 Wh of available energy considering specific operation hours-determined statistically for a given geographic location. Then, the energy production is experimentally verified with the construction of an outdoor IoT sensor powered by a passively-cooled thermoelectric generator. The prototype contains a low-power microcontroller, environmental sensors, and a low-power radio to report selected environmental variables to a central node. This work shows that the proposed supply mechanism provides sufficient energy for continuous operation even during times with no solar resource through an on-board Li-Po battery. Such a battery can be recharged once the solar radiation is available without compromising sensor operation.
引用
收藏
页数:25
相关论文
共 40 条
[1]   Methods of heat transfer intensification in PCM thermal storage systems: Review paper [J].
Al-Maghalseh, Maher ;
Mahkamov, Khamid .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 92 :62-94
[2]   A review of thermoelectric power generation systems: Roles of existing test rigs/prototypes and their associated cooling units on output performance [J].
Alghoul, M. A. ;
Shahahmadi, S. A. ;
Yeganeh, Bita ;
Asim, Nilofar ;
Elbreki, A. M. ;
Sopian, K. ;
Tiong, S. K. ;
Amin, N. .
ENERGY CONVERSION AND MANAGEMENT, 2018, 174 :138-156
[3]   A review of the development and applications of thermoelectric microgenerators for energy harvesting [J].
Ando Junior, O. H. ;
Maran, A. L. O. ;
Henao, N. C. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 91 :376-393
[4]   Optimization of both Perturb & Observe and Open Circuit Voltage MPPT Techniques for Resonant Piezoelectric Vibration Harvesters feeding bridge rectifiers [J].
Balato, Marco ;
Costanzo, Luigi ;
Lo Schiavo, Alessandro ;
Vitelli, Massimo .
SENSORS AND ACTUATORS A-PHYSICAL, 2018, 278 :85-97
[5]  
Carmona M., 2015, P ASME 2015 INT MECH, DOI [10.1115/IMECE2015-51865, DOI 10.1115/IMECE2015-51865]
[6]  
Chandrakasan A., 2016, 2016 IEEE UND RES TE, P1, DOI DOI 10.1109/URTC.2016.8284080
[7]  
Charte D, 2019, PROG ARTIF INTELL, V8, P1, DOI [10.1007/s13748-018-00167-7, 10.1109/sas.2019.8705985]
[8]   Study of energy storage systems and environmental challenges of batteries [J].
Dehghani-Sanij, A. R. ;
Tharumalingam, E. ;
Dusseault, M. B. ;
Fraser, R. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 104 :192-208
[9]   Autonomous Multisensor System Powered by a Solar Thermoelectric Energy Harvester With Ultralow-Power Management Circuit [J].
Dias, Pedro Carvalhaes ;
Oliveira Morais, Flavio Jose ;
de Morais Franca, Maria Bernadete ;
Ferreira, Elnatan Chagas ;
Cabot, Andreu ;
Siqueira Dias, Jose A. .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2015, 64 (11) :2918-2925
[10]   State of the art on high temperature thermal energy storage for power generation. Part 1-Concepts, materials and modellization [J].
Gil, Antoni ;
Medrano, Marc ;
Martorell, Ingrid ;
Lazaro, Ana ;
Dolado, Pablo ;
Zalba, Belen ;
Cabeza, Luisa F. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (01) :31-55