Scintillation of a laser beam propagation through non-Kolmogorov strong turbulence

被引:39
作者
Deng, Peng [1 ]
Yuan, Xiu-Hua [1 ]
Huang, Dexiu [1 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Coll Optoelect Sci & Engn, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Atmospheric optics; Non-Kolmogorov turbulence; Gaussian beam; Scintillation; STRATOSPHERIC TURBULENCE; ATMOSPHERIC COMPENSATION; OPTICAL SCINTILLATION; PERFORMANCE; SATURATION; VARIANCE; SYSTEM; WAVES;
D O I
10.1016/j.optcom.2011.10.030
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Atmospheric turbulence causes strong irradiance fluctuations of propagating optical wave under the severe weather conditions in long-distance free space optical communication. In this paper, the scintillation index for a Gaussian beam wave propagation through non-Kolmogorov turbulent atmosphere is derived in strong fluctuation regime, using non-Kolmogorov spectrum with a generalized power law exponent and the extended Rytov theory with a modified spatial filter function. The analytic expressions are obtained and then used to analyze the effect of power law, refractive-index structure parameter, propagation distance, phase radius of curvature, beam width and wavelength on scintillation index of Gaussian beam under the strong atmospheric turbulence. It shows that, with the increasing of structure parameter or propagation distance, scintillation index increases sharply up to the peak point and then decreases gradually toward unity at rates depending on power law. And there exist optimal value of radius of curvature and beam width for minimizing the value of scintillation index and long wavelength for mitigating the effect of non-Kolmogorov strong turbulence on link performance. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:880 / 887
页数:8
相关论文
共 35 条
[1]  
Andrews L. C., 2005, SPIE, V2nd, DOI DOI 10.1117/3.626196
[2]  
Arnon S., 2008, P SOC PHOTO-OPT INS, V6709
[3]  
Belen'kii M.S., 1999, P SOC PHOTO-OPT INS, V3794, P50
[4]   Preliminary experimental evidence of anisotropy of turbulence and the effect of non-Kolmogorov turbulence on wavefront tilt statistics [J].
Belen'kii, MS ;
Barchers, JD ;
Karis, SJ ;
Osmon, CL ;
Brown, JM ;
Fugate, RQ .
ADAPTIVE OPTICS SYSTEMS AND TECHNOLOGY, 1999, 3762 :396-406
[5]   Experimental study of the effect of non-Kolmogorov stratospheric turbulence on star image motion [J].
Belenkii, MS ;
Karis, SJ ;
Brown, JM ;
Fugate, RQ .
ADAPTIVE OPTICS AND APPLICATIONS, 1997, 3126 :113-123
[6]   Performance of synchronous optical receivers using atmospheric compensation techniques [J].
Belmonte, Aniceto ;
Kahn, Joseph M. .
OPTICS EXPRESS, 2008, 16 (18) :14151-14162
[7]   Atmospheric optical turbulence over land in middle east coastal environments: prediction modeling and measurements [J].
Bendersky, S ;
Kopeika, NS ;
Blaunstein, N .
APPLIED OPTICS, 2004, 43 (20) :4070-4079
[8]   Free-space optical communications [J].
Chan, Vincent W. S. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (12) :4750-4762
[9]   SATURATION OF OPTICAL SCINTILLATION BY STRONG TURBULENCE [J].
CLIFFORD, SF ;
OCHS, GR ;
LAWRENCE, RS .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1974, 64 (02) :148-154
[10]  
ekcio lu H.G., 2010, J OPT SOC AM A, V27, P1834