ON THE GLOBAL BOUNDEDNESS OF THE CHEN SYSTEM

被引:23
作者
Barboza, Ruy [1 ]
Chen, Guanrong [2 ]
机构
[1] Univ Sao Paulo, Sch Engn Sao Carlos, Dept Elect Engn, BR-13566590 Sao Carlos, Brazil
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2011年 / 21卷 / 11期
基金
巴西圣保罗研究基金会;
关键词
Chen system; global boundedness; Lyapunov function; trapping region; LORENZ CANONICAL FORM; CHAOTIC ATTRACTOR;
D O I
10.1142/S021812741103060X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper provides a complete proof of the global boundedness of the Chen system, and some characterization of its trapping region.
引用
收藏
页码:3373 / 3385
页数:13
相关论文
共 21 条
[1]   On the generalized Lorenz canonical form [J].
Celikovsky, S ;
Chen, GR .
CHAOS SOLITONS & FRACTALS, 2005, 26 (05) :1271-1276
[2]   On a generalized Lorenz canonical form of chaotic systems [J].
Celikovsky, S ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (08) :1789-1812
[3]  
Celikovsky S., 2002, P 15 TRIENN WORLD C
[4]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[5]   ON THE NONEQUIVALENCE OF LORENZ SYSTEM AND CHEN SYSTEM [J].
Hou, Zhenting ;
Kang, Ning ;
Kong, Xiangxing ;
Chen, Guanrong ;
Yan, Guojun .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (02) :557-560
[6]   Estimating the bounds for the Lorenz family of chaotic systems [J].
Li, DM ;
Lu, JA ;
Wu, XQ ;
Chen, GR .
CHAOS SOLITONS & FRACTALS, 2005, 23 (02) :529-534
[7]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[8]  
2
[9]   Bridge the gap between the Lorenz system and the Chen system [J].
Lü, JH ;
Chen, GR ;
Cheng, DZ ;
Celikovsky, S .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (12) :2917-2926
[10]   A new chaotic attractor coined [J].
Lü, JH ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (03) :659-661