An Efficient Anomalous Action Recognition Model Based on Out-of-Distribution Detection

被引:0
|
作者
Yu, Pei-Lun [1 ]
Chou, Po-Yung [1 ]
Lin, Cheng-Hung [1 ]
Kao, Wen-Chung [1 ]
机构
[1] Natl Taiwan Normal Univ, Dept Elect Engn, Taipei, Taiwan
关键词
Out of distribution detection; action recognition; machine learning;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Detecting anomalous data is very important for the security issues of nrachine learning. Misjudging anomalous data as normal data may cause serious consequences. For supervised machine learning methods, detecting anomalous data is a big challenge, because anomalous data may be very diverse and it is difficult to collect all possible anomalous data. In recent years, action recognition has been widely used in surveillance systems and home care systems. The recognition of anomalous actions has also become an important requirement of the action recognition system. In this paper, we apply the method that has successfully detected anomalous data on 2D images to identify anomalous actions in videos. The proposed approach can directly identify anomalous actions as long as we train on normal action data. The experimental results show that the proposed approach has achieved significant improvements on anomalous action recognition.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Semantic Driven Energy based Out-of-Distribution Detection
    Joshi, Abhishek
    Chalasani, Sathish
    Iyer, Kiran Nanjunda
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [22] Out-of-distribution detection based on multi-classifiers
    Jiang, Weijie
    Yu, Yuanlong
    COGNITIVE COMPUTATION AND SYSTEMS, 2023, 5 (02) : 95 - 108
  • [23] Out-of-Distribution Detection in Hand Gesture Recognition Using Image Augmentation
    Lee, Hyeonji
    Yu, Yeonguk
    Lee, Kyoobin
    INTELLIGENT AUTONOMOUS SYSTEMS 18, VOL 1, IAS18-2023, 2024, 795 : 595 - 605
  • [24] Out-of-Distribution Detection of Human Activity Recognition with Smartwatch Inertial Sensors
    Boyer, Philip
    Burns, David
    Whyne, Cari
    SENSORS, 2021, 21 (05) : 1 - 23
  • [25] Class-Incremental Gesture Recognition Learning with Out-of-Distribution Detection
    Li, Mingxue
    Cong, Yang
    Liu, Yuyang
    Sun, Gan
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 1503 - 1508
  • [26] Classifying falls using out-of-distribution detection in human activity recognition
    Roy, Debaditya
    Komini, Vangjush
    Girdzijauskas, Sarunas
    AI COMMUNICATIONS, 2023, 36 (04) : 251 - 267
  • [27] Out-of-Distribution Detection for Radar-based Gesture Recognition Using Metric-Learning
    Stadelmayer, Thomas
    Servadei, Lorenzo
    Santra, Avik
    Weigel, Robert
    Lurz, Fabian
    2023 IEEE RADIO AND WIRELESS SYMPOSIUM, RWS, 2023, : 44 - 47
  • [28] Recognition Models for Distribution and Out-of-Distribution of Human Activities
    Staab, Sergio
    Krissel, Simon
    Luderschmidt, Johannes
    Martin, Ludger
    2022 18TH INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS (WIMOB), 2022,
  • [29] Unified Out-Of-Distribution Detection: A Model-Specific Perspective
    Averly, Reza
    Chao, Wei-Lun
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 1453 - 1463
  • [30] Out-of-Distribution Detection for Automotive Perception
    Nitsch, Julia
    Itkina, Masha
    Senanayake, Ransalu
    Nieto, Juan
    Schmidt, Max
    Siegwart, Roland
    Kochenderfer, Mykel J.
    Cadena, Cesar
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 2938 - 2943