Biodegradable polylactide/hydroxyapatite nanocomposite foam scaffolds for bone tissue engineering applications

被引:39
|
作者
Delabarde, Claire [1 ]
Plummer, Christopher J. G. [1 ]
Bourban, Pierre-Etienne [1 ]
Manson, Jan-Anders E. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Technol Composites & Polymeres LTC, Stn 12, CH-1015 Lausanne, Switzerland
关键词
SUPERCRITICAL CARBON-DIOXIDE; IN-VIVO; POLY(LACTIC ACID); POLYPROPYLENE/CLAY NANOCOMPOSITES; CRYSTALLIZATION KINETICS; BIORESORBABLE COMPOSITES; MECHANICAL-PROPERTIES; CELLULAR STRUCTURE; CO2; DEGRADATION;
D O I
10.1007/s10856-012-4619-1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Supercritical carbon dioxide processing of poly--lactide (PLLA)/hydroxyapatite (nHA) nanocomposites was investigated as a means to prepare foams suitable as scaffolds in bone tissue engineering applications. For given foaming parameters, addition of nHA to the PLLA gave reduced cell sizes and improved homogeneity in the size distribution, but did not significantly affect the degree of crystallinity, which remained of the order of 50 wt% in all the foams. The compressive modulus and strength were primarily influenced by the porosity and there was no significant reinforcement of the matrix by the nHA. The mechanical properties of the foams were nevertheless comparable with those of trabecular bone, and by adjusting the saturation pressure and depressurization rate it was possible to generate porosities of about 85 %, an interconnected morphology and cell diameters in the range 200-400 mu m from PLLA containing 4.17 vol% nHA, satisfying established geometrical requirements for bone replacement scaffolds.
引用
收藏
页码:1371 / 1385
页数:15
相关论文
共 50 条
  • [31] Preparation, Characterization, and Implantation of Porous Fibroin/Hydroxyapatite Scaffolds for Bone Tissue Engineering
    Xu, Shui
    Xia, Ju
    Wu, Tingfang
    Gao, Baodong
    Zhang, Yan
    Wang, Xin
    Cheng, Guotao
    Zhu, Yong
    SCIENCE OF ADVANCED MATERIALS, 2018, 10 (11) : 1601 - 1607
  • [32] Biodegradable Polyphosphazene-Nanohydroxyapatite Composite Nanofibers: Scaffolds for Bone Tissue Engineering
    Bhattacharyya, Subhabrata
    Kumbar, Sangamesh G.
    Khan, Yusuf M.
    Nair, Lakshmi S.
    Singh, Anurima
    Krogman, Nick R.
    Brown, Paul W.
    Allcock, Harry R.
    Laurencin, Cato T.
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2009, 5 (01) : 69 - 75
  • [33] Calcium silicate ceramic scaffolds toughened with hydroxyapatite whiskers for bone tissue engineering
    Feng, Pei
    Wei, Pingpin
    Li, Pengjian
    Gao, Chengde
    Shuai, Cijun
    Peng, Shuping
    MATERIALS CHARACTERIZATION, 2014, 97 : 47 - 56
  • [34] Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering
    Lei, Yong
    Xu, Zhengliang
    Ke, Qinfei
    Yin, Wenjing
    Chen, Yixuan
    Zhang, Changqing
    Guo, Yaping
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 72 : 134 - 142
  • [35] Production of hydroxyapatite-bacterial cellulose composite scaffolds with enhanced pore diameters for bone tissue engineering applications
    Bayir, Ece
    Bilgi, Eyup
    Hames, E. Esin
    Sendemir, Aylin
    CELLULOSE, 2019, 26 (18) : 9803 - 9817
  • [36] Evaluation of the effects of starch on polyhydroxybutyrate electrospun scaffolds for bone tissue engineering applications
    Asl, Maryam Abdollahi
    Karbasi, Saeed
    Beigi-Boroujeni, Saeed
    Benisi, Soheila Zamanlui
    Saeed, Mahdi
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 191 : 500 - 513
  • [37] Hydrothermal fabrication of hydroxyapatite/chitosan/carbon porous scaffolds for bone tissue engineering
    Long, Teng
    Liu, Yu-Tai
    Tang, Sha
    Sun, Jin-Liang
    Guo, Ya-Ping
    Zhu, Zhen-An
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2014, 102 (08) : 1740 - 1748
  • [38] Characterization of Biodegradable P3HB/HA Nanocomposite Scaffold for Bone Tissue Engineering
    Saadat, A.
    Karbasi, S.
    Ghader, A. A. Behnam
    Khodaei, M.
    5TH INTERNATIONAL BIENNIAL CONFERENCE ON ULTRAFINE GRAINED AND NANOSTRUCTURED MATERIALS, UFGNSM15, 2015, 11 : 217 - 223
  • [39] 3D-printed biodegradable gyroid scaffolds for tissue engineering applications
    Germain, Loic
    Fuentes, Carlos A.
    van Vuure, Aart W.
    des Rieux, Anne
    Dupont-Gillain, Christine
    MATERIALS & DESIGN, 2018, 151 : 113 - 122
  • [40] Bioactive electrospun nanocomposite scaffolds of poly(lactic acid)/cellulose nanocrystals for bone tissue engineering
    Patel, Dinesh K.
    Dutta, Sayan Deb
    Hexiu, Jin
    Ganguly, Keya
    Lim, Ki-Taek
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 162 : 1429 - 1441