Biodegradable polylactide/hydroxyapatite nanocomposite foam scaffolds for bone tissue engineering applications

被引:39
|
作者
Delabarde, Claire [1 ]
Plummer, Christopher J. G. [1 ]
Bourban, Pierre-Etienne [1 ]
Manson, Jan-Anders E. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Technol Composites & Polymeres LTC, Stn 12, CH-1015 Lausanne, Switzerland
关键词
SUPERCRITICAL CARBON-DIOXIDE; IN-VIVO; POLY(LACTIC ACID); POLYPROPYLENE/CLAY NANOCOMPOSITES; CRYSTALLIZATION KINETICS; BIORESORBABLE COMPOSITES; MECHANICAL-PROPERTIES; CELLULAR STRUCTURE; CO2; DEGRADATION;
D O I
10.1007/s10856-012-4619-1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Supercritical carbon dioxide processing of poly--lactide (PLLA)/hydroxyapatite (nHA) nanocomposites was investigated as a means to prepare foams suitable as scaffolds in bone tissue engineering applications. For given foaming parameters, addition of nHA to the PLLA gave reduced cell sizes and improved homogeneity in the size distribution, but did not significantly affect the degree of crystallinity, which remained of the order of 50 wt% in all the foams. The compressive modulus and strength were primarily influenced by the porosity and there was no significant reinforcement of the matrix by the nHA. The mechanical properties of the foams were nevertheless comparable with those of trabecular bone, and by adjusting the saturation pressure and depressurization rate it was possible to generate porosities of about 85 %, an interconnected morphology and cell diameters in the range 200-400 mu m from PLLA containing 4.17 vol% nHA, satisfying established geometrical requirements for bone replacement scaffolds.
引用
收藏
页码:1371 / 1385
页数:15
相关论文
共 50 条
  • [31] Sterilization techniques for biodegradable scaffolds in tissue engineering applications
    Dai, Zheng
    Ronholm, Jennifer
    Tian, Yiping
    Sethi, Benu
    Cao, Xudong
    JOURNAL OF TISSUE ENGINEERING, 2016, 7
  • [32] Novel selenium and/or copper substituted hydroxyapatite-gelatin-chitosan-eggshell membrane nanocomposite scaffolds for bone tissue engineering applications
    Korowash, Sara Ibrahim
    Sharifulden, Nik S. A. Nik
    Ibrahim, Doreya Mohamed
    Chau, David Y. S.
    JOURNAL OF APPLIED BIOMATERIALS & FUNCTIONAL MATERIALS, 2023, 21
  • [33] Development of biodegradable polyurethane and bioactive glass nanoparticles scaffolds for bone tissue engineering applications
    Rocha de Oliveira, Agda Aline
    de Carvalho, Sandhra Maria
    Leite, Maria de Fatima
    Orefice, Rodrigo Lambert
    Pereira, Marivalda de Magalhaes
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2012, 100B (05) : 1387 - 1396
  • [34] Polymer coated phosphate glass/hydroxyapatite composite scaffolds for bone tissue engineering applications
    Govindan, R.
    Kumar, G. Suresh
    Girija, E. K.
    RSC ADVANCES, 2015, 5 (74) : 60188 - 60198
  • [35] Extrusion freeform fabrication technique for tailoring hydroxyapatite scaffolds for bone tissue engineering applications
    Deisinger, U.
    Leiderer, M.
    Detsch, R.
    Hamisch, S.
    Ziegler, G.
    CYTOTHERAPY, 2006, 8 : 15 - 15
  • [36] Zinc substituted hydroxyapatite/silk fiber/methylcellulose nanocomposite for bone tissue engineering applications
    Valarmathi, N.
    Sumathi, S.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 214 : 324 - 337
  • [37] Nano-hydroxyapatite/β-CD/chitosan nanocomposite for potential applications in bone tissue engineering
    Shakir, Mohammad
    Jolly, Reshma
    Khan, Mohd Shoeb
    Rauf, Ahmar
    Kazmi, Shadab
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2016, 93 : 276 - 289
  • [38] Evaluation of mechanical and biocompatibility properties of hydroxyapatite/manganese dioxide nanocomposite scaffolds for bone tissue engineering application
    Azizi, Fatemeh
    Heidari, Fatemeh
    Fahimipour, Farahnaz
    Sajjadnejad, Mohammad
    Vashaee, Daryoosh
    Tayebi, Lobat
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2020, 17 (05) : 2439 - 2449
  • [39] A synchrotron radiation microtomography study of wettability and swelling of nanocomposite Alginate/Hydroxyapatite scaffolds for bone tissue engineering
    Brun, F.
    Turco, G.
    Paoletti, S.
    Accardo, A.
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, 2015, VOLS 1 AND 2, 2015, 51 : 288 - 291
  • [40] Porous polylactide/β-tricalcium phosphate composite scaffolds for tissue engineering applications
    Haaparanta, Anne-Marie
    Haimi, Suvi
    Ella, Ville
    Hopper, Niina
    Miettinen, Susanna
    Suuronen, Riitta
    Kellomaki, Minna
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2010, 4 (05) : 366 - 373