Predicting protein structural class based on multi-features fusion
被引:73
作者:
Chen, Chao
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Pharmaceut Univ, Sch Tradit Chinese Med, Guangzhou 510006, Guangdong, Peoples R China
Sun Yat Sen Univ, Sch Chem & Chem Engn, Guangzhou 510275, Guangdong, Peoples R ChinaGuangdong Pharmaceut Univ, Sch Tradit Chinese Med, Guangzhou 510006, Guangdong, Peoples R China
Chen, Chao
[1
,2
]
Chen, Li-Xuan
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Inst Standardizat, Guangzhou 510170, Guangdong, Peoples R ChinaGuangdong Pharmaceut Univ, Sch Tradit Chinese Med, Guangzhou 510006, Guangdong, Peoples R China
Chen, Li-Xuan
[3
]
Zou, Xiao-Yong
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Chem & Chem Engn, Guangzhou 510275, Guangdong, Peoples R ChinaGuangdong Pharmaceut Univ, Sch Tradit Chinese Med, Guangzhou 510006, Guangdong, Peoples R China
Zou, Xiao-Yong
[2
]
Cai, Pei-Xiang
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Chem & Chem Engn, Guangzhou 510275, Guangdong, Peoples R ChinaGuangdong Pharmaceut Univ, Sch Tradit Chinese Med, Guangzhou 510006, Guangdong, Peoples R China
Cai, Pei-Xiang
[2
]
机构:
[1] Guangdong Pharmaceut Univ, Sch Tradit Chinese Med, Guangzhou 510006, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Chem & Chem Engn, Guangzhou 510275, Guangdong, Peoples R China
[3] Guangzhou Inst Standardizat, Guangzhou 510170, Guangdong, Peoples R China
protein structural classes;
support vector machine;
PROFEAT;
fusion;
prediction;
D O I:
10.1016/j.jtbi.2008.03.009
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Structural class characterizes the overall folding type of a protein or its domain and the prediction of protein structural class has become both an important and a challenging topic in protein science. Moreover, the prediction itself can stimulate the development of novel predictors that may be straightforwardly applied to many other relational areas. In this paper, 10 frequently used sequence-derived structural and physicochemical features, which can be easily computed by the PROFEAT (Protein Features) web server, were taken as inputs of support vector machines to develop statistical learning models for predicting the protein structural class. More importantly, a strategy of merging different features, called best-first search, was developed. It was shown through the rigorous jackknife cross-validation test that the success rates by our method were significantly improved. We anticipate that the present method may also have important impacts on boosting the predictive accuracies for a series of other protein attributes, such as subcellular localization, membrane types, enzyme family and subfamily classes, among many others. (C) 2008 Elsevier Ltd. All rights reserved.
机构:
Gordon Life Sci Inst, San Diego, CA 92130 USA
Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200030, Peoples R ChinaGordon Life Sci Inst, San Diego, CA 92130 USA
Shen, Hong-Bin
Chou, Kuo-Chen
论文数: 0引用数: 0
h-index: 0
机构:
Gordon Life Sci Inst, San Diego, CA 92130 USA
Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200030, Peoples R ChinaGordon Life Sci Inst, San Diego, CA 92130 USA
机构:Chinese Acad Med Sci, Inst Basic Med Sci, Natl Lab Med Mol Biol, Beijing 100005, Peoples R China
Yan, Xingqi
Chao, Tengfei
论文数: 0引用数: 0
h-index: 0
机构:Chinese Acad Med Sci, Inst Basic Med Sci, Natl Lab Med Mol Biol, Beijing 100005, Peoples R China
Chao, Tengfei
Tu, Kang
论文数: 0引用数: 0
h-index: 0
机构:Chinese Acad Med Sci, Inst Basic Med Sci, Natl Lab Med Mol Biol, Beijing 100005, Peoples R China
Tu, Kang
Zhang, Yu
论文数: 0引用数: 0
h-index: 0
机构:Chinese Acad Med Sci, Inst Basic Med Sci, Natl Lab Med Mol Biol, Beijing 100005, Peoples R China
Zhang, Yu
论文数: 引用数:
h-index:
机构:
Xie, Lu
Gong, Yanhua
论文数: 0引用数: 0
h-index: 0
机构:Chinese Acad Med Sci, Inst Basic Med Sci, Natl Lab Med Mol Biol, Beijing 100005, Peoples R China
Gong, Yanhua
Yuan, Jiangang
论文数: 0引用数: 0
h-index: 0
机构:Chinese Acad Med Sci, Inst Basic Med Sci, Natl Lab Med Mol Biol, Beijing 100005, Peoples R China
Yuan, Jiangang
Qiang, Boqin
论文数: 0引用数: 0
h-index: 0
机构:Chinese Acad Med Sci, Inst Basic Med Sci, Natl Lab Med Mol Biol, Beijing 100005, Peoples R China
Qiang, Boqin
Peng, Xiaozhong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Med Sci, Inst Basic Med Sci, Natl Lab Med Mol Biol, Beijing 100005, Peoples R ChinaChinese Acad Med Sci, Inst Basic Med Sci, Natl Lab Med Mol Biol, Beijing 100005, Peoples R China
机构:
Gordon Life Sci Inst, San Diego, CA 92130 USA
Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200030, Peoples R ChinaGordon Life Sci Inst, San Diego, CA 92130 USA
Shen, Hong-Bin
Chou, Kuo-Chen
论文数: 0引用数: 0
h-index: 0
机构:
Gordon Life Sci Inst, San Diego, CA 92130 USA
Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200030, Peoples R ChinaGordon Life Sci Inst, San Diego, CA 92130 USA
机构:Chinese Acad Med Sci, Inst Basic Med Sci, Natl Lab Med Mol Biol, Beijing 100005, Peoples R China
Yan, Xingqi
Chao, Tengfei
论文数: 0引用数: 0
h-index: 0
机构:Chinese Acad Med Sci, Inst Basic Med Sci, Natl Lab Med Mol Biol, Beijing 100005, Peoples R China
Chao, Tengfei
Tu, Kang
论文数: 0引用数: 0
h-index: 0
机构:Chinese Acad Med Sci, Inst Basic Med Sci, Natl Lab Med Mol Biol, Beijing 100005, Peoples R China
Tu, Kang
Zhang, Yu
论文数: 0引用数: 0
h-index: 0
机构:Chinese Acad Med Sci, Inst Basic Med Sci, Natl Lab Med Mol Biol, Beijing 100005, Peoples R China
Zhang, Yu
论文数: 引用数:
h-index:
机构:
Xie, Lu
Gong, Yanhua
论文数: 0引用数: 0
h-index: 0
机构:Chinese Acad Med Sci, Inst Basic Med Sci, Natl Lab Med Mol Biol, Beijing 100005, Peoples R China
Gong, Yanhua
Yuan, Jiangang
论文数: 0引用数: 0
h-index: 0
机构:Chinese Acad Med Sci, Inst Basic Med Sci, Natl Lab Med Mol Biol, Beijing 100005, Peoples R China
Yuan, Jiangang
Qiang, Boqin
论文数: 0引用数: 0
h-index: 0
机构:Chinese Acad Med Sci, Inst Basic Med Sci, Natl Lab Med Mol Biol, Beijing 100005, Peoples R China
Qiang, Boqin
Peng, Xiaozhong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Med Sci, Inst Basic Med Sci, Natl Lab Med Mol Biol, Beijing 100005, Peoples R ChinaChinese Acad Med Sci, Inst Basic Med Sci, Natl Lab Med Mol Biol, Beijing 100005, Peoples R China