The KEX2 gene of Candida glabrata is required for cell surface integrity

被引:41
作者
Bader, O
Schaller, M
Klein, S
Kukula, J
Haack, K
Mühlschlegel, F
Korting, HC
Schäfer, W
Hube, B
机构
[1] Univ Hamburg, Inst Allgemeine Bot, D-22609 Hamburg, Germany
[2] Robert Koch Inst, D-13353 Berlin, Germany
[3] Univ Munich, Klin & Poliklin Dermatol & Allergol, D-80337 Munich, Germany
[4] Univ Kent, Dept Biosci, Canterbury CT2 7NJ, Kent, England
关键词
D O I
10.1046/j.1365-2958.2001.02614.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Candida glabrata has emerged as one of the most common causes of candidosis. In order to identify factors that are necessary for viability and pathogenicity of this fungal pathogen, we analysed the role of the KEX2 gene, which codes for a regulatory endoproteinase that is known to process certain virulence factors in Candida albicans. The KEX2 gene from C. glabrata was cloned and found to have 51% and 62% identity and high structural similarities to the homologous counterparts in C. albicans and Saccharomyces cerevisiae. KEX2 was expressed at all time points investigated during growth in complex medium. In order to investigate the role of this putative regulatory proteinase, Kex2-deficient mutants were produced. In addition to known kex2 phenotypes, such as pH and calcium hypersensitivity, the mutants grew in cellular aggregates and were found to be hypersensitive to several antifungal drugs that target the cell membrane, including azoles, amorolfine and amphotericin B. Ultrastructural investigation after exposure to low doses of itraconazole showed azole-specific alterations such as enlarged vacuoles and proliferation of the cytoplasmatic membrane in the kex2 mutants, but not in the control strains. In contrast, antifungals such as 5-flucytosine and hydroxypyridones inhibited growth of the kex2 mutants and the control strains to the same extent. In an in vitro model of oral candidosis, kex2 mutants showed reduced tissue damage in the presence of itraconazole compared with the control infections. These data suggest that Kex2 is involved in the processing of proteins that are essential for cell surface integrity of C. glabrata.
引用
收藏
页码:1431 / 1444
页数:14
相关论文
共 71 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   MAMMALIAN SUBTILISINS - THE LONG-SOUGHT DIBASIC PROCESSING ENDOPROTEASES [J].
BARR, PJ .
CELL, 1991, 66 (01) :1-3
[3]   Quantitative assessment of enzyme specificity in vivo:: P2 recognition by Kex2 protease defined in a genetic system [J].
Bevan, A ;
Brenner, C ;
Fuller, RS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (18) :10384-10389
[4]  
Borgers M, 1988, Curr Top Med Mycol, V2, P1
[5]   STRUCTURAL AND ENZYMATIC CHARACTERIZATION OF A PURIFIED PROHORMONE-PROCESSING ENZYME - SECRETED, SOLUBLE KEX2 PROTEASE [J].
BRENNER, C ;
FULLER, RS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (03) :922-926
[6]   SOI1 encodes a novel, conserved protein that promotes TGN-endosomal cycling of Kex2p and other membrane proteins by modulating the function of two TGN localization signals [J].
Brickner, JH ;
Fuller, RS .
JOURNAL OF CELL BIOLOGY, 1997, 139 (01) :23-36
[7]   Regulatory networks controlling Candida albicans morphogenesis [J].
Brown, AJP ;
Gow, NAR .
TRENDS IN MICROBIOLOGY, 1999, 7 (08) :333-338
[8]   New potential cell wall glucanases of Saccharomyces cerevisiae and their involvement in mating [J].
Cappellaro, C ;
Mrsa, V ;
Tanner, W .
JOURNAL OF BACTERIOLOGY, 1998, 180 (19) :5030-5037
[9]   Correlation between rhodamine 123 accumulation and atole sensitivity in Candida species: Possible role for drug efflux in drug resistance [J].
Clark, FS ;
Parkinson, T ;
Hitchcock, CA ;
Gow, NAR .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1996, 40 (02) :419-425
[10]   An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells [J].
Cormack, BP ;
Ghori, N ;
Falkow, S .
SCIENCE, 1999, 285 (5427) :578-582