DUAL SPACES OF ANISOTROPIC MIXED-NORM HARDY SPACES

被引:75
作者
Huang, Long [1 ]
Liu, Jun [1 ]
Yang, Dachun [1 ]
Yuan, Wen [1 ]
机构
[1] Beijing Normal Univ, Lab Math & Complex Syst, Minist Educ China, Sch Math Sci, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Anisotropic Euclidean space; (mixed-norm) Campanato space; (mixed-norm) Hardy space; duality; LIZORKIN-TRIEBEL SPACES; CAMPANATO SPACES; HP SPACES; OPERATORS; BESOV;
D O I
10.1090/proc/14348
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let a := (a1,..., a(n)) is an element of [1, infinity)(n), P := (p(1),...,p(n)) is an element of (0, infinity)(n) and H-a(p)(R-n) be the anisotropic mixed-norm Hardy space associated with a, defined via the non-tangential grand maximal function. In this article, the authors give the dual space of H-a(p)(R-n), which was asked by Cleanthous et al. in [J. Geom. Anal. 27 (2017), pp. 2758-27871. More precisely, applying the known atomic and finite atomic characterizations of H-a(p)(R-n), the authors prove that the dual space of H-a(p)(R-n), with p is an element of (0, 1](n), is the anisotropic mixed-norm Campanato space L-p,r,s(a) (R-n) for every r is an element of [1, infinity) and s is an element of [nu/alpha(1/p- -1)], infinity) boolean AND z+, where v := a1 + ... +a(n), a- := min{a(1),...,a(n)}, p- := min{p1,..., p(n)} and, for any t is an element of R, [t] denotes the largest integer not greater than t. This duality result is new even for the isotropic mixed-norm Hardy spaces on R-n.
引用
收藏
页码:1201 / 1215
页数:15
相关论文
共 42 条
[1]   On the Hormander-Mihlin theorem for mixed-norm Lebesgue spaces [J].
Antonic, Nenad ;
Ivec, Ivan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (01) :176-199
[2]   SPACES LP, WITH MIXED NORM [J].
BENEDEK, A ;
PANZONE, R .
DUKE MATHEMATICAL JOURNAL, 1961, 28 (03) :301-&
[3]  
Bownik M, 2003, MEM AM MATH SOC, V164, P1
[4]   PARABOLIC MAXIMAL FUNCTIONS ASSOCIATED WITH A DISTRIBUTION [J].
CALDERON, AP ;
TORCHINSKY, A .
ADVANCES IN MATHEMATICS, 1975, 16 (01) :1-64
[5]   PARABOLIC MAXIMAL FUNCTIONS ASSOCIATED WITH A DISTRIBUTION .2. [J].
CALDERON, AP ;
TORCHINSKY, A .
ADVANCES IN MATHEMATICS, 1977, 24 (02) :101-171
[6]  
Campanato S., 1964, Ann. Scuola Norm. Sup. Pisa (3), V18, P137
[7]  
Chen T., ARXIV171201064
[8]  
Cleanthous G, 2017, CONTEMP MATH, V693, P167, DOI 10.1090/conm/693/13931
[9]   Anisotropic Mixed-Norm Hardy Spaces [J].
Cleanthous, G. ;
Georgiadis, A. G. ;
Nielsen, M. .
JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (04) :2758-2787
[10]   Molecular decomposition of anisotropic homogeneous mixed-norm spaces with applications to the boundedness of operators [J].
Cleanthous, Galatia ;
Georgiadis, Athanasios G. ;
Nielsen, Morten .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2019, 47 (02) :447-480