Simulation of mould filling process using smoothed particle hydrodynamics

被引:19
作者
He Yi [1 ]
Zhou Zhao-yao [1 ]
Cao Wen-jiong [1 ]
Chen Wei-ping [1 ]
机构
[1] S China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Guangdong, Peoples R China
关键词
high pressure die casting (HPDC); smoothed particle hydrodynamics (SPH); filling process; moving least squares method; SPH METHOD; FLOWS;
D O I
10.1016/S1003-6326(11)61111-4
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating fluid particles from inlet particles. The roles of artificial viscosity and moving least squares method in the present model were compared in the handling pressure oscillation. The final model was substantiated by simulating filling process in HPDC in both two and three dimensions. The simulated results from SPH and finite difference method (FDM) were compared with the experiments. The results show the former is in a better agreement with experiments. It demonstrates the efficiency and precision of this SPH model in describing flow pattern in filling process.
引用
收藏
页码:2684 / 2692
页数:9
相关论文
共 15 条
[1]  
[Anonymous], 2003, Smoothed particle hydrodynamics: a meshfree particle method, DOI DOI 10.1007/S00466-004-0573-1
[2]   Flow modelling in casting processes [J].
Cleary, P ;
Ha, J ;
Alguine, V ;
Nguyen, T .
APPLIED MATHEMATICAL MODELLING, 2002, 26 (02) :171-190
[3]   3D SPH flow predictions and validation for high pressure die casting of automotive components [J].
Cleary, P. W. ;
Ha, J. ;
Prakash, M. ;
Nguyen, T. .
APPLIED MATHEMATICAL MODELLING, 2006, 30 (11) :1406-1427
[4]   Conduction modelling using smoothed particle hydrodynamics [J].
Cleary, PW ;
Monaghan, JJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 148 (01) :227-264
[5]   Numerical simulation of interfacial flows by smoothed particle hydrodynamics [J].
Colagrossi, A ;
Landrini, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 191 (02) :448-475
[6]   Numerical modeling of water waves with the SPH method [J].
Dalrymple, RA ;
Rogers, BD .
COASTAL ENGINEERING, 2006, 53 (2-3) :141-147
[7]   An incompressible multi-phase SPH method [J].
Hu, X. Y. ;
Adams, N. A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (01) :264-278
[8]   Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments [J].
Liu, M. B. ;
Liu, G. R. .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2010, 17 (01) :25-76
[9]   SMOOTHED PARTICLE HYDRODYNAMICS [J].
MONAGHAN, JJ .
ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, 1992, 30 :543-574
[10]   SHOCK SIMULATION BY THE PARTICLE METHOD SPH [J].
MONAGHAN, JJ ;
GINGOLD, RA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1983, 52 (02) :374-389