Very large-scale neighborhood search for the K-Constraint Multiple Knapsack Problem

被引:13
作者
Ahuja, R [1 ]
Cunha, C
机构
[1] Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA
[2] Univ Fed Sao Paulo, Escola Politecn, Dept Transportat Engn, Sao Paulo, Brazil
基金
美国国家科学基金会;
关键词
heuristics; neighborhood search algorithms; knapsack problem;
D O I
10.1007/s10732-005-2634-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The K-Constraint Multiple Knapsack Problem (K-MKP) is a generalization of the multiple knapsack problem, which is one of the representative combinatorial optimization problems known to be NP-hard. In K-MKP, each item has K types of weights and each knapsack has K types of capacity. In this paper, we propose several very large-scale neighborhood search (VLSN) algorithms to solve K-MKP. One of the VLSN algorithms incorporates a novel approach that consists of randomly perturbing the current solution in order to efficiently produce a set of simultaneous non-profitable moves. These moves would allow several items to be transferred from their current knapsacks and assigned to new knapsacks, which makes room for new items to be inserted through multi-exchange movements and allows for improved solutions. Computational results presented show that the method is effective, and provides better solutions compared to exact algorithms run for the same amount of time.
引用
收藏
页码:465 / 481
页数:17
相关论文
共 26 条
[1]   A survey of very large-scale neighborhood search techniques [J].
Ahuja, RK ;
Ergun, Ö ;
Orlin, JB ;
Punnen, AP .
DISCRETE APPLIED MATHEMATICS, 2002, 123 (1-3) :75-102
[2]   A composite very large-scale neighborhood structure for the capacitated minimum spanning tree problem [J].
Ahuja, RK ;
Orlin, JB ;
Sharma, D .
OPERATIONS RESEARCH LETTERS, 2003, 31 (03) :185-194
[3]   Multi-exchange neighborhood structures for the capacitated minimum spanning tree problem [J].
Ahuja, RK ;
Orlin, JB ;
Sharma, D .
MATHEMATICAL PROGRAMMING, 2001, 91 (01) :71-97
[4]   A greedy genetic algorithm for the quadratic assignment problem [J].
Ahuja, RK ;
Orlin, JB ;
Tiwari, A .
COMPUTERS & OPERATIONS RESEARCH, 2000, 27 (10) :917-934
[5]  
AHUJA RK, 2003, IN PRESS MANAGEMENT
[6]  
AHUJA RK, 2002, IN PRESS INFORMS J C
[7]  
AHUJA RK, 2003, UNPUB OPERATIONS RES
[8]  
Ahuja RK, 1993, NETWORK FLOWS THEORY
[9]  
[Anonymous], 1967, Management Science
[10]  
[Anonymous], 1997, TABU SEARCH