Symmetries of the discrete nonlinear Schrodinger equation

被引:6
|
作者
Heredero, RH [1 ]
Levi, D
Winternitz, P
机构
[1] Univ Complutense Madrid, Fac Ciencias Fis, Dept Fis Teor 2, E-28040 Madrid, Spain
[2] Univ Roma Tre, Dipartimento Fis Edoardo Amaldi, Rome, Italy
[3] Ist Nazl Fis Nucl, Rome, Italy
[4] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1023/A:1010439432232
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Lie algebra L(h) of point symmetries of a discrete analogue of the nonlinear Schrodinger equation (NLS) is described. In the continuous limit, the discrete equation is transformed into the NLS, while the structure of the Lie algebra changes: a contraction occurs with the lattice spacing h as the contraction parameter. A live-dimensional subspace of L(h), generated by both point and generalized symmetries, transforms into the hire-dimensional point symmetry algebra of the NLS.
引用
收藏
页码:729 / 737
页数:9
相关论文
共 50 条
  • [12] Continuous symmetries of the discrete nonlinear telegraph equation
    Ody, MS
    Common, AK
    Sobhy, MI
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 1999, 10 : 265 - 284
  • [13] Breathers for the Discrete Nonlinear Schrodinger Equation with Nonlinear Hopping
    Karachalios, N. I.
    Sanchez-Rey, B.
    Kevrekidis, P. G.
    Cuevas, J.
    JOURNAL OF NONLINEAR SCIENCE, 2013, 23 (02) : 205 - 239
  • [14] Symmetries of the Discrete Nonlinear Schrödinger Equation
    R. Hernández Heredero
    D. Levi
    P. Winternitz
    Theoretical and Mathematical Physics, 2001, 127 : 729 - 737
  • [15] Algebras of discrete symmetries and supersymmetries for the Schrodinger-Pauli equation
    Nikitin, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (06): : 885 - 897
  • [16] Moving solitons in the discrete nonlinear Schrodinger equation
    Oxtoby, O. F.
    Barashenkov, I. V.
    PHYSICAL REVIEW E, 2007, 76 (03):
  • [17] Solitons in a modified discrete nonlinear Schrodinger equation
    Molina, Mario I.
    SCIENTIFIC REPORTS, 2018, 8
  • [18] Transition behavior of the discrete nonlinear Schrodinger equation
    Rumpf, Benno
    PHYSICAL REVIEW E, 2008, 77 (03):
  • [19] Soliton dynamics in the discrete nonlinear Schrodinger equation
    Malomed, B
    Weinstein, MI
    PHYSICS LETTERS A, 1996, 220 (1-3) : 91 - 96
  • [20] Shock waves in the discrete nonlinear Schrodinger equation
    Salerno, M
    NEW PERSPECTIVES IN THE PHYSICS OF MESOSCOPIC SYSTEMS: QUANTUM-LIKE DESCRIPTIONS AND MACROSCOPIC COHERENCE PHENOMENA, 1997, : 264 - 272