Symmetries of the discrete nonlinear Schrodinger equation

被引:6
|
作者
Heredero, RH [1 ]
Levi, D
Winternitz, P
机构
[1] Univ Complutense Madrid, Fac Ciencias Fis, Dept Fis Teor 2, E-28040 Madrid, Spain
[2] Univ Roma Tre, Dipartimento Fis Edoardo Amaldi, Rome, Italy
[3] Ist Nazl Fis Nucl, Rome, Italy
[4] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1023/A:1010439432232
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Lie algebra L(h) of point symmetries of a discrete analogue of the nonlinear Schrodinger equation (NLS) is described. In the continuous limit, the discrete equation is transformed into the NLS, while the structure of the Lie algebra changes: a contraction occurs with the lattice spacing h as the contraction parameter. A live-dimensional subspace of L(h), generated by both point and generalized symmetries, transforms into the hire-dimensional point symmetry algebra of the NLS.
引用
收藏
页码:729 / 737
页数:9
相关论文
共 50 条
  • [1] Symmetries of the nonlinear Schrodinger equation
    Grébert, B
    Kappeler, T
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2002, 130 (04): : 603 - 618
  • [2] On certain symmetries of the nonlinear Schrodinger equation
    Agüero, M
    Alvarado, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (03): : 493 - 516
  • [3] Symmetries of factorization chains for the discrete Schrodinger equation
    Spiridonov, V
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (02): : L15 - L21
  • [4] Symmetries and solutions of the vector nonlinear Schrodinger equation
    Sciarrino, K
    Winternitz, P
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1997, 112 (06): : 853 - 871
  • [5] Symmetries for exact solutions to the nonlinear Schrodinger equation
    Aktosun, Tuncay
    Busse, Theresa
    Demontis, Francesco
    van der Mee, Cornelis
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (02)
  • [6] Nonequilibrium discrete nonlinear Schrodinger equation
    Iubini, Stefano
    Lepri, Stefano
    Politi, Antonio
    PHYSICAL REVIEW E, 2012, 86 (01):
  • [7] Discrete nonlinear Schrodinger equation with defects
    Trombettoni, A
    Smerzi, A
    Bishop, AR
    PHYSICAL REVIEW E, 2003, 67 (01): : 166071 - 166071
  • [8] The fractional discrete nonlinear Schrodinger equation
    Molina, Mario, I
    PHYSICS LETTERS A, 2020, 384 (08)
  • [9] On the integrability of the discrete nonlinear Schrodinger equation
    Levi, D.
    Petrera, M.
    Scimiterna, C.
    EPL, 2008, 84 (01)
  • [10] Coupled Nonlinear Schrodinger Equation: Symmetries and Exact Solutions
    Liu Ping
    Lou Sen-Yue
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 51 (01) : 27 - 34