Hamiltonian square roots of skew Hamiltonian quaternionic matrices

被引:0
作者
Rodman, Leiba [1 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
关键词
Hamiltonian matrix; skew Hamiltonian matrix; quaternion; square root;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Criteria for existence of Hamiltonian quaternionic matrices that are square roots of a given skew Hamiltonian quaternionic matrix are developed. The criteria are formulated in terms of respective canonical forms of skew Hamiltonian quaternionic matrices. The Hamiltonian property is understood with respect to either the quaternionic conjugation, or an involutory antiautomorphism of the quaternions which is different from the quaternionic conjugation. Many results are stated and proved in a more general framework of symmetric and skewsymmetric matrices with respect to an invertible matrix which is skewsymmetric relative to an involutory antiautomorphism.
引用
收藏
页数:24
相关论文
共 25 条
  • [1] BAKER A, 2002, MATRIX GROUPS
  • [2] Bolshakov Y, 1997, LINEAR ALGEBRA APPL, V261, P91
  • [3] BOURBAKI N, 1959, ELEMENTS MATH, pCH9
  • [4] BRIESKORN E, 1985, LINEARE ALGEBRA ANAL, V2
  • [5] BRIESKORN E, 1985, LINEARE ALGEBRA ANAL, V1
  • [6] Cross G. W., 1973, Linear Multilinear Algebra, V1, P289, DOI [DOI 10.1080/03081087408817029, 10.1080/03081087408817029]
  • [7] NORMAL FORMS OF ELEMENTS OF CLASSICAL REAL AND COMPLEX LIE AND JORDAN ALGEBRAS
    DJOKOVIC, DZ
    PATERA, J
    WINTERNITZ, P
    ZASSENHAUS, H
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (06) : 1363 - 1374
  • [8] Several observations on symplectic, Hamiltonian, and skew-Hamiltonian matrices
    Fassbender, H
    Ikramov, KD
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 400 : 15 - 29
  • [9] Fassbender H, 1999, LINEAR ALGEBRA APPL, V287, P125
  • [10] Gantmacher F. R., 1959, THEORY MATRICES, V2