A Comparative Modeling Study of Thermal Mitigation Strategies in Irreversible Electroporation Treatments

被引:10
作者
Aycock, Kenneth N. [1 ]
Campelo, Sabrina N. [1 ]
Davalos, Rafael, V [1 ]
机构
[1] Virginia Tech, Dept Biomed Engn & Mech, Bioelectromech Syst Lab, Wake Forest Sch Biomed Engn & Sci, 320 Kelly Hall,325 Stanger St, Blacksburg, VA 24061 USA
来源
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME | 2022年 / 144卷 / 03期
基金
美国国家卫生研究院;
关键词
PHASE-CHANGE MATERIALS; IN-VIVO; ABLATION; ELECTRODE; CANCER; INJURY; SAFETY; LIVER;
D O I
10.1115/1.4053199
中图分类号
O414.1 [热力学];
学科分类号
摘要
Irreversible electroporation (IRE), also referred to as nonthermal pulsed field ablation (PFA), is an attractive focal ablation modality for solid tumors and cardiac tissue due to its ability to destroy aberrant cells with limited disruption of the underlying tissue architecture. Despite its nonthermal cell death mechanism, application of electrical energy results in Joule heating that, if ignored, can cause undesired thermal injury. Engineered thermal mitigation (TM) technologies including phase change materials (PCMs) and active cooling (AC) have been reported and tested as a potential means to limit thermal damage. However, several variables affect TM performance including the pulsing paradigm, electrode geometry, PCM composition, and chosen active cooling parameters, meaning direct comparisons between approaches are lacking. In this study, we developed a computational model of conventional bipolar and monopolar probes with solid, PCM-filled, or actively cooled cores to simulate clinical IRE treatments in pancreatic tissue. This approach reveals that probes with integrated PCM cores can be tuned to drastically limit thermal damage compared to existing solid probes. Furthermore, actively cooled probes provide additional control over thermal effects within the probe vicinity and can altogether abrogate thermal damage. In practice, such differences in performance must be weighed against the increased time, expense, and effort required for modified probes compared to existing solid probes.
引用
收藏
页数:10
相关论文
共 54 条
[1]   Mathematical modeling of the thermal effects of irreversible electroporation for in vitro, in vivo, and clinical use: a systematic review [J].
Agnass, Pierre ;
van Veldhuisen, Eran ;
van Gernert, Martin J. C. ;
van der Geld, Cees W. M. ;
van Lienden, Krijn P. ;
van Gulik, Thomas M. ;
Meijerink, Martijn R. ;
Besselink, Marc G. ;
Kok, H. Petra ;
Crezee, Johannes .
INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2020, 37 (01) :486-505
[2]   The role of irreversible electroporation (IRE) for locally advanced pancreatic cancer: a systematic review of safety and efficacy [J].
Ansari, Daniel ;
Kristoffersson, Stina ;
Andersson, Roland ;
Bergenfeldt, Magnus .
SCANDINAVIAN JOURNAL OF GASTROENTEROLOGY, 2017, 52 (11) :1165-1171
[3]   An Experimental and Numerical Investigation of Phase Change Electrodes for Therapeutic Irreversible Electroporation [J].
Arena, Christopher B. ;
Mahajan, Roop L. ;
Rylander, Marissa Nichole ;
Davalos, Rafael V. .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2013, 135 (11)
[4]   Towards the development of latent heat storage electrodes for electroporation-based therapies [J].
Arena, Christopher B. ;
Mahajan, Roop L. ;
Rylander, Marissa Nichole ;
Davalos, Rafael V. .
APPLIED PHYSICS LETTERS, 2012, 101 (08)
[5]   MRI-TRUS fusion for electrode positioning during irreversible electroporation for treatment of prostate cancer [J].
Baur, Alexander D. J. ;
Collettini, Federico ;
Enders, Judith ;
Maxeiner, Andreas ;
Schreiter, Vera ;
Stephan, Carsten ;
Gebauer, Bernhard ;
Hamm, Bernd ;
Fischer, Thomas .
DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY, 2017, 23 (04) :321-325
[6]   Real-time prediction of patient immune cell modulation during irreversible electroporation therapy [J].
Beitel-White, N. ;
Martin, R. C. G. ;
Li, Y. ;
Brock, R. M. ;
Allen, I. C. ;
Davalos, R. V. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[7]   Multi-Tissue Analysis on the Impact of Electroporation on Electrical and Thermal Properties [J].
Beitel-White, Natalie ;
Lorenzo, Melvin F. ;
Zhao, Yajun ;
Brock, Rebecca M. ;
Coutermarsh-Ott, Sheryl ;
Allen, Irving C. ;
Manuchehrabadi, Navid ;
Davalos, Rafael, V .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2021, 68 (03) :771-782
[8]   Starting a Fire Without Flame: The Induction of Cell Death and Inflammation in Electroporation-Based Tumor Ablation Strategies [J].
Brock, Rebecca M. ;
Beitel-White, Natalie ;
Davalos, Rafael, V ;
Allen, Irving C. .
FRONTIERS IN ONCOLOGY, 2020, 10
[9]   Efficacy of multi-electrode linear irreversible electroporation [J].
Buist, Thomas J. ;
Groen, Marijn H. A. ;
Wittkampf, Fred H. M. ;
Loh, Peter ;
Doevendans, Pieter A. F. M. ;
van Es, Rene ;
Elvan, Arif .
EUROPACE, 2021, 23 (03) :464-468
[10]   An evaluation of irreversible electroporation thresholds in human prostate cancer and potential correlations to physiological measurements [J].
Campelo S. ;
Valerio M. ;
Ahmed H.U. ;
Hu Y. ;
Arena S.L. ;
Neal R.E. ;
Emberton M. ;
Arena C.B. .
APL Bioengineering, 2017, 1 (01)