Blow-up criteria for the 21/2D magnetic Benard fluid system with partial viscosity

被引:5
作者
Ma Liangliang [1 ,2 ]
Zhang Lei [3 ,4 ,5 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu, Peoples R China
[2] Panzhihua Univ, Dept Math & Comp, Panzhihua, Peoples R China
[3] Sichuan Univ, Coll Comp Sci, Chengdu, Peoples R China
[4] Qinghai Univ, Dept Comp Technol & Applicat, State Key Lab Plateau Ecol & Agr, Xining, Peoples R China
[5] Sichuan Univ, Informat Management Ctr, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
Ming Mei; Magnetic Benard system; blow-up criterion; smooth solutions; dissipation; magnetic diffusion; thermal diffusivity; Besov spaces; PARTIAL DISSIPATION; MICROPOLAR SYSTEM; EQUATIONS;
D O I
10.1080/00036811.2018.1529305
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem for the 2D incompressible magnetic Benard fluid system with partial viscosity and derive some blow-up criteria of smooth solutions. More precisely, we first obtain a blow-up criterion of smooth solutions to the 2D magnetic Benard fluid system without zero magnetic diffusion and thermal diffusivity. Furthermore, we derive two blow-up criteria of smooth solutions to the 2D magnetic Benard fluid system without dissipation.
引用
收藏
页码:1271 / 1299
页数:29
相关论文
共 24 条
[1]  
[Anonymous], 2002, CRC RES NOTES MATH
[2]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[3]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[4]  
Chemin J. Y., 1998, OXFORD LECT SER MATH
[5]   About lifespan of regular solutions of equations related to viscoelastic fluids [J].
Chemin, JY ;
Masmoudi, N .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (01) :84-112
[6]   On Two-Dimensional Magnetic Benard Problem with Mixed Partial Viscosity [J].
Cheng, Jianfeng ;
Du, Lili .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2015, 17 (04) :769-797
[7]   GLOBAL WELL-POSEDNESS OF TWO-DIMENSIONAL MAGNETOHYDRODYNAMIC FLOWS WITH PARTIAL DISSIPATION AND MAGNETIC DIFFUSION [J].
Du, Lili ;
Zhou, Deqin .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (02) :1562-1589
[8]   ON THE NAVIER-STOKES INITIAL VALUE PROBLEM .1. [J].
FUJITA, H ;
KATO, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (04) :269-315
[9]   The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations [J].
Kozono, H ;
Ogawa, T ;
Taniuchi, Y .
MATHEMATISCHE ZEITSCHRIFT, 2002, 242 (02) :251-278
[10]   Remarks on the blowup criteria for Oldroyd models [J].
Lei, Zhen ;
Masmoudi, Nader ;
Zhou, Yi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (02) :328-341