Some improvements of invertibility verifications for second-order linear elliptic operators

被引:4
|
作者
Watanabe, Yoshitaka [1 ]
Kinoshita, Takehiko [1 ]
Nakao, Mitsuhiro T. [2 ]
机构
[1] Kyushu Univ, Res Inst Informat Technol, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
[2] Waseda Univ, Fac Sci & Engn, Shinjuku Ku, 3-4-1 Okubo, Tokyo 1698555, Japan
基金
日本科学技术振兴机构;
关键词
Numerical verification; Solvability of linear problem; Differential operators; NUMERICAL VERIFICATION; ERROR ESTIMATION; EQUATIONS; INVERSE; BOUNDS; EXISTENCE; CONSTANT; NORM;
D O I
10.1016/j.apnum.2020.03.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents some computer-assisted procedures to prove the invertibility of a second-order linear elliptic operator and to compute a bound for the norm of its inverse. These approaches are based on constructive L-2-norm estimates of the Laplacian and improve on previous procedures that use projection and a priori error estimations. Several examples which confirm the actual effectiveness of the procedures are reported. (C) 2020 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:36 / 46
页数:11
相关论文
共 50 条
  • [21] STOCHASTIC COMPLETENESS AND L1-LIOUVILLE PROPERTY FOR SECOND-ORDER ELLIPTIC OPERATORS
    Ganguly, D. E. B. D. I. P.
    Pinchover, Y. E. H. U. D. A.
    Roychowdhury, P. R. A. S. U. N.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (5-6): : 1672 - 1685
  • [22] On the Lp-theory for second-order elliptic operators in divergence form with complex coefficients
    ter Elst, A. F. M.
    Haller-Dintelmann, R.
    Rehberg, J.
    Tolksdorf, P.
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (04) : 3963 - 4003
  • [23] G-CONVERGENCE FOR NON-DIVERGENCE SECOND-ORDER ELLIPTIC OPERATORS IN THE PLANE
    Alberico, Teresa
    Capozzoli, Costantino
    D'Onofrio, Luigi
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2013, 26 (9-10) : 1127 - 1138
  • [24] Determination of second-order elliptic operators in two dimensions from partial Cauchy data
    Imanuvilov, Oleg Y.
    Uhlmann, Gunther
    Yamamoto, Masahiro
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (02) : 467 - 472
  • [25] On The Equivalence of Heat Kernels of Second-Order Parabolic Operators
    Ganguly, Debdip
    Pinchover, Yehuda
    JOURNAL D ANALYSE MATHEMATIQUE, 2020, 140 (02): : 549 - 589
  • [26] Equivalence of one-dimensional second-order linear finite difference operators
    Miro, B.
    Rose, D.
    Valiquette, F.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2016, 22 (10) : 1524 - 1541
  • [27] Maximum Principles for Boundary-Degenerate Second Order Linear Elliptic Differential Operators
    Feehan, Paul M. N.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2013, 38 (11) : 1863 - 1935
  • [28] CRITICAL PERTURBATIONS FOR SECOND-ORDER ELLIPTIC OPERATORS, I: SQUARE FUNCTION BOUNDS FOR LAYER POTENTIALS
    Bortz, Simon
    Hofmann, Steve
    Garcia, Jose Luis Luna
    Mayboroda, Svitlana
    Poggi, Bruno
    ANALYSIS & PDE, 2022, 15 (05): : 1215 - 1286
  • [29] Closed form numerical solutions of variable coefficient linear second-order elliptic problems
    Casaban, M. -C.
    Company, R.
    Jodar, L.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 238 : 266 - 280
  • [30] Some Remarks on the Rigorous Estimation of Inverse Linear Elliptic Operators
    Kinoshita, Takehiko
    Watanabe, Yoshitaka
    Nakao, Mitsuhiro T.
    SCIENTIFIC COMPUTING, COMPUTER ARITHMETIC, AND VALIDATED NUMERICS (SCAN 2014), 2016, 9553 : 225 - 235