Some improvements of invertibility verifications for second-order linear elliptic operators

被引:4
作者
Watanabe, Yoshitaka [1 ]
Kinoshita, Takehiko [1 ]
Nakao, Mitsuhiro T. [2 ]
机构
[1] Kyushu Univ, Res Inst Informat Technol, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
[2] Waseda Univ, Fac Sci & Engn, Shinjuku Ku, 3-4-1 Okubo, Tokyo 1698555, Japan
基金
日本科学技术振兴机构;
关键词
Numerical verification; Solvability of linear problem; Differential operators; NUMERICAL VERIFICATION; ERROR ESTIMATION; EQUATIONS; INVERSE; BOUNDS; EXISTENCE; CONSTANT; NORM;
D O I
10.1016/j.apnum.2020.03.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents some computer-assisted procedures to prove the invertibility of a second-order linear elliptic operator and to compute a bound for the norm of its inverse. These approaches are based on constructive L-2-norm estimates of the Laplacian and improve on previous procedures that use projection and a priori error estimations. Several examples which confirm the actual effectiveness of the procedures are reported. (C) 2020 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:36 / 46
页数:11
相关论文
共 33 条
[1]  
[Anonymous], 2008, Jahresber. Dtsch. Math. Ver
[2]  
[Anonymous], [No title captured]
[3]  
Ciarlet P. G., 2002, Stud. Math. Appl.
[4]  
Grisvard P, 2011, CLASS APPL MATH, V69, P1, DOI 10.1137/1.9781611972030
[5]  
GRISVARD P., 1992, SINGULARITIES BOUNDA
[6]   Determination of the Babuska-Aziz constant for the linear triangular finite element [J].
Kikuchi, F ;
Liu, XF .
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2006, 23 (01) :75-82
[7]   An alternative approach to norm bound computation for inverses of linear operators in Hilbert spaces [J].
Kinoshita, Takehiko ;
Watanabe, Yoshitaka ;
Nakao, Mitsuhiro T. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (09) :5431-5447
[8]   An improvement of the theorem of a posteriori estimates for inverse elliptic operators [J].
Kinoshita, Takehiko ;
Watanabe, Yoshitaka ;
Nakao, Mitsuhiro T. .
IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2014, 5 (01) :47-52
[9]   Some Remarks on the Rigorous Estimation of Inverse Linear Elliptic Operators [J].
Kinoshita, Takehiko ;
Watanabe, Yoshitaka ;
Nakao, Mitsuhiro T. .
SCIENTIFIC COMPUTING, COMPUTER ARITHMETIC, AND VALIDATED NUMERICS (SCAN 2014), 2016, 9553 :225-235
[10]   A Constructive A Priori Error Estimation for Finite Element Discretizations in a Non-Convex Domain Using Singular Functions [J].
Kobayashi, Kenta .
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2009, 26 (2-3) :493-516