Carbon Nanotube SRAM in 5-nm Technology Node Design, Optimization, and Performance Evaluation--Part I: CNFET Transistor Optimization

被引:10
作者
Chen, Rongmei [1 ]
Chen, Lin [2 ]
Liang, Jie [3 ]
Cheng, Yuanqing [2 ]
Elloumi, Souhir [4 ]
Lee, Jaehyun [5 ]
Xu, Kangwei [2 ]
Georgiev, Vihar P. [6 ]
Ni, Kai [7 ]
Debacker, Peter [1 ]
Asenov, Asen [6 ]
Todri-Sanial, Aida [4 ]
机构
[1] IMEC, B-3001 Leuven, Belgium
[2] Beihang Univ, Sch Microelect, Beijing 100191, Peoples R China
[3] Shanghai Univ, Sch Microelect, Shanghai 200444, Peoples R China
[4] Univ Montpellier, CNRS, LIRMM, Microelect Dept, F-34095 Montpellier, France
[5] Synopsys Ltd, Glasgow G3 8HB, Lanark, Scotland
[6] Univ Glasgow, Sch Engn, Glasgow G12 8QQ, Lanark, Scotland
[7] Rochester Inst Technol, Dept Microsyst, Rochester, NY 14623 USA
基金
欧盟地平线“2020”;
关键词
CNTFETs; FinFETs; SRAM cells; Optimization; Logic gates; Field effect transistors; Stability analysis; Carbon nanotube field-effect transistor (CNFET) static random access memory (SRAM) cell; energy-delay-product (EDP); FinFET SRAM cell; read delay; static noise margin (SNM); static power; write delay; VIRTUAL-SOURCE MODEL; CAPACITANCE; ARRAYS; CELL; FETS;
D O I
10.1109/TVLSI.2022.3146125
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we propose a carbon nanotube (CNT) field-effect transistor (CNFET)-based static random access memory (SRAM) design at the 5-nm technology node that is optimized based on the tradeoff between performance, stability, and power efficiency. In addition to size optimization, physical model parameters including CNT density, CNT diameter, and CNFET flat band voltage are evaluated and optimized for CNFET SRAM performance improvement. Optimized CNFET SRAM is compared with state-of-the-art 7-nm FinFET SRAM cell based on Arizona State University [ASAP 7-nm FinFET predictive technology models (PTM)] library. We find that the read, write EDPs, and static power of the proposed CNFET SRAM cell are improved by 67.6%, 71.5%, and 43.6%, respectively, compared with the FinFET SRAM cell, with slightly better stability. CNT interconnects both inside and in-between CNFET SRAM cells are considered to compose an all-carbon-based SRAM (ACS) array which will be discussed in the Part II of this article. A 7-nm FinFET SRAM cell with copper interconnects is implemented and used for comparison.
引用
收藏
页码:432 / 439
页数:8
相关论文
共 59 条
  • [1] Variability Aware Simulation Based Design-Technology Cooptimization (DTCO) Flow in 14 nm FinFET/SRAM Cooptimization
    Asenov, Asen
    Cheng, Binjie
    Wang, Xingsheng
    Brown, Andrew Robert
    Millar, Campbell
    Alexander, Craig
    Amoroso, Salvatore Maria
    Kuang, Jente B.
    Nassif, Sani R.
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (06) : 1682 - 1690
  • [2] Variation-Aware Delay Fault Testing for Carbon-Nanotube FET Circuits
    Banerjee, Sanmitra
    Chaudhuri, Arjun
    Ning, August
    Chakrabarty, Krishnendu
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2021, 29 (02) : 409 - 422
  • [3] Analysis of the Impact of Process Variations and Manufacturing Defects on the Performance of Carbon-Nanotube FETs
    Banerjee, Sanmitra
    Chaudhuri, Arjun
    Chakrabarty, Krishnendu
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2020, 28 (06) : 1513 - 1526
  • [4] Electrical Performance Optimization of Nanoscale Double-Gate MOSFETs Using Multiobjective Genetic Algorithms
    Bendib, Toufik
    Djeffal, Faycal
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (11) : 3743 - 3750
  • [5] Contact Resistance Parallel Model for Edge-Contacted 2D Material Back-Gate FET
    Cai, Fei
    Deng, Guangsheng
    Li, Xiangxiang
    Lin, Fujiang
    [J]. ELECTRONICS, 2020, 9 (12) : 1 - 10
  • [6] Cao Q, 2013, NAT NANOTECHNOL, V8, P180, DOI [10.1038/nnano.2012.257, 10.1038/NNANO.2012.257]
  • [7] Chen, IEEE T VLSI SYST
  • [8] Self-aligned carbon nanotube transistors with charge transfer doping
    Chen, J
    Klinke, C
    Afzali, A
    Avouris, P
    [J]. APPLIED PHYSICS LETTERS, 2005, 86 (12) : 1 - 3
  • [9] Chen R., 2020, INT EL DEVICES MEET, P15
  • [10] Variability Study of MWCNT Local Interconnects Considering Defects and Contact Resistances-Part I: Pristine MWCNT
    Chen, Rongmei
    Liang, Jie
    Lee, Jaehyun
    Georgiev, Vihar P.
    Ramos, Raphael
    Okuno, Hanako
    Kalita, Dipankar
    Cheng, Yuanqing
    Zhang, Liuyang
    Pandey, Reetu R.
    Amoroso, Salvatore
    Millar, Campbell
    Asenov, Asen
    Dijon, Jean
    Todri-Sanial, Aida
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (11) : 4955 - 4962