Existence of sign-changing solutions for a class of p-Laplacian Kirchhoff-type equations

被引:12
作者
Han, Xiaotian [1 ]
Ma, Xiaoyan [1 ]
He, Xiaoming [1 ]
机构
[1] Minzu Univ China, Coll Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
p-Kirchhoff type equation; sign-changing solution; vanishing potential; Nehari manifold; NONLINEAR SCHRODINGER-EQUATIONS; POSITIVE SOLUTIONS; NONTRIVIAL SOLUTIONS; MULTIPLE SOLUTIONS; NODAL SOLUTIONS; GROUND-STATES;
D O I
10.1080/17476933.2018.1427078
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the existence of least energy sign-changing solutions for the following p-Laplacian Kirchhoff type equation {-(a+b integral(N)(R)vertical bar del u vertical bar(p)dx) Delta(p)u+V(x)vertical bar u vertical bar p(-2)u = K(x)f(u) in R-N, u is an element of D-1,D-p (R-N), where a,b > 0 are constants, Delta(p)u = div (vertical bar del u vertical bar(p-2) del u), 1 < p < N, V(x), K(x) are positive continuous functions which vanish at infinity, the nonlinearity f is a function with a subcritical growth. Using a minimization argument and the Nehari manifold method, we prove the existence of a least energy sign-changing solution to this problem.
引用
收藏
页码:181 / 203
页数:23
相关论文
共 48 条
[1]   Existence of least energy nodal solution for a Schrodinger-Poisson system in bounded domains [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06) :1153-1166
[2]   Existence of solutions for a class of nonlinear Schrodinger equations with potential vanishing at infinity [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (04) :1977-1991
[3]   Positive solutions for a quasilinear elliptic equation of Kirchhoff type [J].
Alves, CO ;
Corrêa, FJSA ;
Ma, TF .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :85-93
[4]  
Ambrosetti A, 2005, DIFFER INTEGRAL EQU, V18, P1321
[5]  
Ambrosetti A, 2005, J EUR MATH SOC, V7, P117
[6]  
[Anonymous], 2008, Sign-Changing Critical Point Theory
[7]  
[Anonymous], 2006, PROGR MATH
[8]  
[Anonymous], 2001, Adv. Differential Equations
[9]   On the well-posedness of the Kirchhoff string [J].
Arosio, A ;
Panizzi, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :305-330
[10]   Existence of least energy positive, negative and nodal solutions for a class of p&q-problems with potentials vanishing at infinity [J].
Barile, Sara ;
Figueiredo, Giovany Malcher .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 427 (02) :1205-1233