Some Quasilinear Elliptic Equations Involving Multiple p-Laplacians

被引:23
作者
Pomponio, Alessio [1 ]
Watanabe, Tatsuya [2 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, Via Orabona 4, I-70125 Bari, Italy
[2] Kyoto Sangyo Univ, Fac Sci, Dept Math, Kita Ku, Kyoto 6038555, Japan
关键词
Quasilinear elliptic equation; variational method; ground state solution; SCALAR FIELD-EQUATIONS; R-N; SUPERLINEAR (P; MOUNTAIN PASS; EXISTENCE; Q)-LAPLACIAN; REGULARITY; SYMMETRY;
D O I
10.1512/iumj.2018.67.7523
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the study, with variational technique, of the following quasilinear elliptic problem: {-Delta(p)u - beta Delta(q)u = g(u) in R-N, u(x) -> 0 as |x| -> + infinity, where N >= 3, 1 < p < q, and p < N. We are interested in the existence of positive solutions for general nonlinearities. Specifically, we obtain the existence result for the zero mass case, which includes a large class of pure power nonlinearities. More general quasilinear problems of Born-Infeld type are also considered.
引用
收藏
页码:2199 / 2224
页数:26
相关论文
共 34 条
  • [11] BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
  • [12] Bonheure D., 2012, REND I MAT U TRIESTE, V44, P259
  • [13] On the Electrostatic Born-Infeld Equation with Extended Charges
    Bonheure, Denis
    d'Avenia, Pietro
    Pomponio, Alessio
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 346 (03) : 877 - 906
  • [14] Brezis H., 2010, FUNCTIONAL ANAL SOBO, DOI DOI 10.1007/978-0-387-70914-7
  • [15] Carley H, 2015, MATH PHYS ANAL GEOM, V18, DOI 10.1007/s11040-015-9177-6
  • [16] Existence of a nontrivial solution for the (p, q)-Laplacian in RN without the Ambrosetti-Rabinowitz condition
    Chaves, Marcio Fialho
    Ercole, Grey
    Miyagaki, Olimpio Hiroshi
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 114 : 133 - 141
  • [17] On the regularity of solutions in the Pucci-Serrin identity
    Degiovanni, M
    Musesti, A
    Squassina, M
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 18 (03) : 317 - 334
  • [18] DOO J. M., 2003, ELECT J DIFFERENTIAL, V83, P14
  • [19] Ferrero Alberto, 2003, Adv. Differential Equations, V8, P1081
  • [20] Existence of positive solutions for a class of p&q elliptic problems with critical growth on RN
    Figueiredo, Giovany M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 378 (02) : 507 - 518