Nanostructure and device architecture engineering for high-performance quantum-dot light-emitting diodes

被引:35
|
作者
Chen, Fei [1 ]
Guan, Zhongyuan [1 ]
Tang, Aiwei [1 ]
机构
[1] Beijing Jiaotong Univ, Minist Educ, Sch Sci, Key Lab Luminescence & Opt Informat, Beijing 100044, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
CORE-SHELL NANOCRYSTALS; CDSE/CDS CORE/SHELL NANOCRYSTALS; LIQUID-CRYSTAL DISPLAYS; INP-AT-ZNSES; HIGH-EFFICIENCY; SEMICONDUCTOR NANOCRYSTALS; CARBON DOTS; ELECTRICALLY DRIVEN; OPTICAL-PROPERTIES; ZNO NANOPARTICLES;
D O I
10.1039/c8tc04028a
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum-dot-based light-emitting diodes (QD-LEDs) have attracted considerable attention owing to their high color purity, size-dependent emission wavelength tunability, and solution processing ability as well as their inherent photo-and thermal-stability, making them suitable candidates for next-generation flat-panel displays and solid-state lighting. In the last few decades, tremendous progress has been achieved in increasing the lifetime and efficiency of QD-LEDs, with the maximum external quantum efficiency (ZEQE) of the red-and green-emitting QD-LEDs reaching 20.5% and 23.68%, respectively. These efficiencies are comparable to state-of-the-art phosphorescent organic light-emitting diodes (OLEDs) and the operational lifetimes of red-and green-emitting QD-LEDs have satisfied the requirements for use in commercial displays. In comparison with the red-and green-emitting QD-LEDs, blue-emitting QD-LEDs exhibit a lower lifetime and device efficiency. Even though the maximum eta(EQE) can reach 18%, the lifetime is only about 1000 h, which falls short of the basic requirements for commercial displays (>10000 h). In this review, we present the improvements made in the device performance of QD-LEDs through optimization of the quantum dot (QD) emitting layer and device architectures. The optimization of the QD emitting layer, the effects of the nanostructure-tailoring and surface-engineering of the quantum dots on the device performance are highlighted. Moreover, owing to the toxicity of Cd-based QD-LEDs, advances in the performance of heavy-metal-free QD-LEDs are also emphasized. Furthermore, the optimization of device architectures, the progress of the device performance and the working mechanism are outlined, based on the four types of QD-LEDs. Finally, we present the challenges and future perspectives facing researchers who are developing QD-LEDs.
引用
收藏
页码:10958 / 10981
页数:24
相关论文
共 50 条
  • [1] Material and device engineering for high-performance blue quantum dot light-emitting diodes
    Jia, Haoran
    Wang, Fuzhi
    Tan, Zhan'ao
    NANOSCALE, 2020, 12 (25) : 13186 - 13224
  • [2] Colloidal quantum-dots surface and device structure engineering for high-performance light-emitting diodes
    Shang, Yuequn
    Ning, Zhijun
    NATIONAL SCIENCE REVIEW, 2017, 4 (02) : 170 - 183
  • [3] Recent progress in the device architecture of white quantum-dot light-emitting diodes
    Zhang, Heng
    Su, Qiang
    Chen, Shuming
    JOURNAL OF INFORMATION DISPLAY, 2019, 20 (04) : 169 - 180
  • [4] High-Performance Blue Quantum-Dot Light-Emitting Diodes by Alleviating Electron Trapping
    Wang, Fangfang
    Hua, Qingzhao
    Lin, Qingli
    Zhang, Fengjuan
    Chen, Fei
    Zhang, Huimin
    Zhu, Xiaoxiang
    Xue, Xulan
    Xu, Xiongping
    Shen, Huaibin
    Zhang, Hanzhuang
    Ji, Wenyu
    ADVANCED OPTICAL MATERIALS, 2022, 10 (13)
  • [5] High-Performance Red Quantum-Dot Light-Emitting Diodes Based on Organic Electron Transporting Layer
    Yang, Liuqing
    Li, Xuefei
    Yang, Qingqing
    Wang, Shumeng
    Tian, Hongkun
    Ding, Junqiao
    Wang, Lixiang
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (06)
  • [6] A review on the electroluminescence properties of quantum-dot light-emitting diodes
    Yuan, Qilin
    Wang, Ting
    Yu, Panlong
    Zhang, Hanzhuang
    Zhang, Han
    Ji, Wenyu
    ORGANIC ELECTRONICS, 2021, 90 (90)
  • [7] Polymer as an Additive in the Emitting Layer for High-Performance Quantum Dot Light-Emitting Diodes
    Liang, Feng
    Liu, Yuan
    Hu, Yun
    Shi, Ying-Li
    Liu, Yu-Qiang
    Wang, Zhao-Kui
    Wang, Xue-Dong
    Sung, Bao-Quan
    Liao, Liang-Sheng
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (23) : 20239 - 20246
  • [8] Enhancing the Performance of Quantum-Dot Light-Emitting Diodes by Postmetallization Annealing
    Su, Qiang
    Zhang, Heng
    Sun, Yizhe
    Sun, Xiao Wei
    Chen, Shuming
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (27) : 23218 - 23224
  • [9] Influence of Ambient Gas on the Performance of Quantum-Dot Light-Emitting Diodes
    Lin, Qingli
    Chen, Fei
    Wang, Honzhe
    Shen, Huaibin
    Wang, Aqiang
    Wang, Lei
    Zhang, Fengjuan
    Guo, Fang
    Li, Lin Song
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (18) : 11557 - 11563
  • [10] On the degradation mechanisms of quantum-dot light-emitting diodes
    Chen, Song
    Cao, Weiran
    Liu, Taili
    Tsang, Sai-Wing
    Yang, Yixing
    Yan, Xiaolin
    Qian, Lei
    NATURE COMMUNICATIONS, 2019, 10 (1)