Solitary waves on Fermi-Pasta-Ulam lattices: IV. Proof of stability at low energy

被引:80
作者
Friesecke, G [1 ]
Pego, RL
机构
[1] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
关键词
D O I
10.1088/0951-7715/17/1/014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the long-time stability of low-energy solitary waves in one-dimensional nonintegrable lattices with Hamiltonian H = Sigma(jis an element ofZ)((1)/(2)p(j)(2) + V(q(j+1) - q(j))) with a general nearest-neighbour potential V. As a corollary we obtain a recurrence theorem related to numerical observations by Fermi, Pasta and Ulam.
引用
收藏
页码:229 / 251
页数:23
相关论文
共 18 条
[1]  
[Anonymous], 1991, LECTNOTES PHYS
[3]   Universal geometric condition for the transverse instability of solitary waves [J].
Bridges, TJ .
PHYSICAL REVIEW LETTERS, 2000, 84 (12) :2614-2617
[4]  
Fermi E., 1974, LECT APPL MATH, V15, P143
[5]   DISCRETE LATTICE SOLITONS - PROPERTIES AND STABILITY [J].
FLYTZANIS, N ;
PNEVMATIKOS, S ;
PEYRARD, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (07) :783-801
[6]   Solitary waves on Fermi-Pasta-Ulam lattices: III. Howland-type Floquet theory [J].
Friesecke, G ;
Pego, RL .
NONLINEARITY, 2004, 17 (01) :207-227
[7]   Solitary waves on FPU lattices: I. Qualitative properties, renormalization and continuum limit [J].
Friesecke, G ;
Pego, RL .
NONLINEARITY, 1999, 12 (06) :1601-1627
[8]   EXISTENCE THEOREM FOR SOLITARY WAVES ON LATTICES [J].
FRIESECKE, G ;
WATTIS, JAD .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 161 (02) :391-418
[9]   Atomic-scale localization of high-energy solitary waves on lattices [J].
Friesecke, G ;
Matthies, K .
PHYSICA D-NONLINEAR PHENOMENA, 2002, 171 (04) :211-220
[10]   Solitary waves on FPU lattices: II. Linear implies nonlinear stability [J].
Friesecke, G ;
Pego, RL .
NONLINEARITY, 2002, 15 (04) :1343-1359