Structure, function, and formation of biological iron-sulfur clusters

被引:1072
|
作者
Johnson, DC [1 ]
Dean, DR
Smith, AD
Johnson, MK
机构
[1] Virginia Polytech Inst & State Univ, Dept Biochem, Blacksburg, VA 24061 USA
[2] Univ Georgia, Dept Chem, Athens, GA 30602 USA
[3] Univ Georgia, Ctr Metalloenzyme Studies, Athens, GA 30602 USA
关键词
iron-sulfur clusters; scaffolds; cysteine desulfurase; chaperones;
D O I
10.1146/annurev.biochem.74.082803.133518
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Iron-sulfur [Fe-S] clusters are ubiquitous and evolutionary ancient prosthetic groups that are required to sustain fundamental life processes. Owing to their remarkable structural plasticity and versatile chemical/electronic features [Fe-S] clusters participate in electron transfer, substrate binding/activation, iron/sulfur storage, regulation of gene expression, and enzyme activity. Formation of intracellular [Fe-S] clusters does not occur spontaneously but requires a complex biosynthetic machinery. Three different types of [Fe-S] cluster biosynthetic systems have been discovered, and all of them are mechanistically unified by the requirement for a cysteine desulfurase and the participation of an [Fe-S] cluster scaffolding protein. Important mechanistic questions related to [Fe-S] cluster biosynthesis involve the molecular details of how [Fe-S] clusters are assembled on scaffold proteins, how [Fe-S] clusters are transferred from scaffolds to target proteins, how various accessory proteins participate in [Fe-S] protein maturation, and how the biosynthetic process is regulated.
引用
收藏
页码:247 / 281
页数:35
相关论文
共 50 条