Curvature evolution of nonconvex lens-shaped domains

被引:14
作者
Bellettini, Giovanni [1 ,2 ]
Novaga, Matteo [3 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] INFN Lab Nazl Frascati, Rome, Italy
[3] Univ Padua, Dipartimento Matemat, I-35121 Padua, Italy
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2011年 / 656卷
关键词
CURVE SHORTENING FLOW; PARABOLIC EQUATIONS; MEAN-CURVATURE; PLANE-CURVES; MOTION; SINGULARITIES; SURFACES;
D O I
10.1515/CRELLE.2011.041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the curvature flow of planar nonconvex lens-shaped domains, considered as special symmetric networks with two triple junctions. We show that the evolving domain becomes convex in finite time; then it shrinks homothetically to a point, as proved in [22]. Our theorem is the analog of the result of Grayson [13] for curvature flow of closed planar embedded curves.
引用
收藏
页码:17 / 46
页数:30
相关论文
共 22 条
[11]  
FREIRE A, ANAL PDE IN PRESS
[12]  
GAGE M, 1986, J DIFFER GEOM, V23, P69
[13]  
GRAYSON MA, 1987, J DIFFER GEOM, V26, P285
[14]  
HAMILTON RS, 1986, J DIFFER GEOM, V24, P153
[15]  
HATTENSCHWEILER J, 2007, THESIS ETH ZURICH
[16]  
HUISKEN G, 1990, J DIFFER GEOM, V31, P285
[17]  
Huisken G., 1998, ASIAN J MATH, V2, P127
[18]  
ILMANEN T, 2009, COMMUNICATION
[19]  
Mantegazza C, 2004, ANN SCUOLA NORM-SCI, V3, P235
[20]   2-DIMENSIONAL MOTION OF IDEALIZED GRAIN BOUNDARIES [J].
MULLINS, WW .
JOURNAL OF APPLIED PHYSICS, 1956, 27 (08) :900-904