Curvature evolution of nonconvex lens-shaped domains

被引:14
作者
Bellettini, Giovanni [1 ,2 ]
Novaga, Matteo [3 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] INFN Lab Nazl Frascati, Rome, Italy
[3] Univ Padua, Dipartimento Matemat, I-35121 Padua, Italy
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2011年 / 656卷
关键词
CURVE SHORTENING FLOW; PARABOLIC EQUATIONS; MEAN-CURVATURE; PLANE-CURVES; MOTION; SINGULARITIES; SURFACES;
D O I
10.1515/CRELLE.2011.041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the curvature flow of planar nonconvex lens-shaped domains, considered as special symmetric networks with two triple junctions. We show that the evolving domain becomes convex in finite time; then it shrinks homothetically to a point, as proved in [22]. Our theorem is the analog of the result of Grayson [13] for curvature flow of closed planar embedded curves.
引用
收藏
页码:17 / 46
页数:30
相关论文
共 22 条
[1]  
ABRESCH U, 1986, J DIFFER GEOM, V23, P175
[2]  
ALTSCHULER SJ, 1991, J DIFFER GEOM, V34, P491
[4]   PARABOLIC EQUATIONS FOR CURVES ON SURFACES .1. CURVES WITH P-INTEGRABLE CURVATURE [J].
ANGENENT, S .
ANNALS OF MATHEMATICS, 1990, 132 (03) :451-483
[5]  
[Anonymous], 1983, ELLIPTIC PARTIAL DIF
[6]  
Brakke KA., 1978, MOTION SURFACE ITS M
[7]   ON 3-PHASE BOUNDARY MOTION AND THE SINGULAR LIMIT OF A VECTOR-VALUED GINZBURG-LANDAU EQUATION [J].
BRONSARD, L ;
REITICH, F .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 124 (04) :355-379
[8]   Self-similar solutions of a 2-D multiple-phase curvature flow [J].
Chen, Xinfu ;
Guo, Jong-Shenq .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 229 (01) :22-34
[9]  
De Giorgi E., 1996, VARIATIONAL METHODS, V25, P1, DOI [10.1007/978-3-0348-9244-5 1, DOI 10.1007/978-3-0348-9244-51]
[10]   INTERIOR ESTIMATES FOR HYPERSURFACES MOVING BY MEAN-CURVATURE [J].
ECKER, K ;
HUISKEN, G .
INVENTIONES MATHEMATICAE, 1991, 105 (03) :547-569