Tuning of Li-argyrodites ionic conductivity through silicon substitution (Li 6+xP1-xSixS5Cl0.5Br0.5) and their electrochemical performance in lithium solid state batteries

被引:25
作者
Subramanian, Yuvaraj [1 ]
Rajagopal, Rajesh [1 ]
Senthilkumar, Baskar [2 ]
Park, Yong Joon [3 ]
Kang, Sung [4 ]
Jung, Yu Jin [5 ]
Ryu, Kwang-Sun [1 ]
机构
[1] Univ Ulsan, Dept Chem, Ulsan, South Korea
[2] Jawaharlal Nehru Ctr Adv Sci Res, New Chem Unit, Bangalore 560064, Karnataka, India
[3] Kyonggi Univ, Dept Adv Mat Engn, 154-42 Gwanggyosan Ro, Suwon 16227, Gyeonggi Do, South Korea
[4] Res Inst Ind Sci & Technol, Pohang, South Korea
[5] Korea Res Inst Chem Technol KRICT, Res Ctr Adv Specialty Chem, Ulsan 44412, South Korea
关键词
Argyrodites; Silicon substitution; Ionic conductivity; Electrochemical performances; Solid electrolyte; LI6PS5X X; ELECTROLYTE; PHOSPHORUS; INTERFACE; STABILITY; CRYSTAL; BULK; BR; CL;
D O I
10.1016/j.electacta.2021.139431
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium solid state batteries are one of the state of the art energy storage systems due to their high safety. However, ionic conductivity in solid electrolytes is a concern, because at present it does not match the ionic conductivity of non-aqueous Li-ion batteries, thus resulting in sluggish electrochemical kinetics. In this report, we enhance the ionic conductivity of Li-argyrodites (Li6PS5Cl0.5Br0.5) through Si substitution at the P-site using a dry ball milling process. Among the silicon substitutions, Li6.2Si0.2P0.8S5Cl0.5Br0.5 exhibited the high ionic conductivity of 5.12 mS cm(-1) compared to pristine Li6PS5Cl0.5Br0.5 at 4.02 mS cm(-1). The Rietveld refinement analysis revealed that after silicon substitution, volume of the unit cell gets increased that allows the lithium at T2-site, that promotes the fast Li-ion transport. Moreover, the optimized solid electrolyte was utilized in a solid state battery system, and demonstrated a high initial capacity of 148.1 mAh g(-1) at 0.1 C rate compared to pristine argyrodite (135.1 mAh g(-1)). Further, we demonstrated the interface phenomena between electrode and solid electrolyte using ex-situ XPS analysis. This confirmed the formation of interface products such as LiCl, Li2S, lithium polysulfides and P2Sx, which influence the cycling stability of the ASSLBs. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 54 条
[1]   Boosting Solid-State Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution [J].
Adeli, Parvin ;
Bazak, J. David ;
Park, Kern Ho ;
Kochetkov, Ivan ;
Huq, Ashfia ;
Goward, Gillian R. ;
Nazar, Linda F. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (26) :8681-8686
[2]   Interface Stability of Argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in Bulk All-Solid-State Batteries [J].
Auvergniot, Jeremie ;
Cassel, Alice ;
Ledeuil, Jean-Bernard ;
Viallet, Virginie ;
Seznec, Vincent ;
Dedryvere, Remi .
CHEMISTRY OF MATERIALS, 2017, 29 (09) :3883-3890
[3]   Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: An XPS study [J].
Auvergniot, Jeremie ;
Cassel, Alice ;
Foix, Dominique ;
Viallet, Virgine ;
Seznec, Vincent ;
Dedryvere, Remi .
SOLID STATE IONICS, 2017, 300 :78-85
[4]   Competing Structural Influences in the Li Superionic Conducting Argyrodites Li6PS5-xSexBr (0 ≤ x ≤ 1) upon Se Substitution [J].
Bernges, Tim ;
Culver, Sean P. ;
Minafra, Nicolo ;
Koerver, Raimund ;
Zeier, Wolfgang G. .
INORGANIC CHEMISTRY, 2018, 57 (21) :13920-13928
[5]   Recent advances in inorganic solid electrolytes for lithium batteries [J].
Cao, Can ;
Li, Zhuo-Bin ;
Wang, Xiao-Liang ;
Zhao, Xin-Bing ;
Han, Wei-Qiang .
FRONTIERS IN ENERGY RESEARCH, 2014,
[6]   Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application [J].
Chen, Shaojie ;
Xie, Dongjiu ;
Liu, Gaozhan ;
Mwizerwa, Jean Pierre ;
Zhang, Qiang ;
Zhao, Yanran ;
Xu, Xiaoxiong ;
Yao, Xiayin .
ENERGY STORAGE MATERIALS, 2018, 14 :58-74
[7]   Li6PS5X:: A class of crystalline Li-rich solids with an unusually high Li+ mobility [J].
Deiseroth, Hans-Joerg ;
Kong, Shiao-Tong ;
Eckert, Hellmut ;
Vannahme, Julia ;
Reiner, Christof ;
Zaiss, Torsten ;
Schlosser, Marc .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (04) :755-758
[8]  
Ding ZL, 2020, J ELECTROCHEM SOC, V167, DOI [10.1149/1145-7111/ab7f84, 10.1149/1945-7111/ab7f84]
[9]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[10]  
Janek J, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.141, 10.1038/NENERGY.2016.141]