Bayesian State Estimation Using Generalized Coordinates

被引:17
作者
Balaji, Bhashyam [1 ]
Friston, Karl [2 ]
机构
[1] Def Res & Dev Canada Ottawa, Radar Syst Sect, 3701 Carling Ave, Ottawa, ON K1A 0Z4, Canada
[2] UCL, Welcome Trust Ctr Neuroimaging, Inst Neurol, London WC1N 3BG, England
来源
SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XX | 2011年 / 8050卷
关键词
Variational Filtering; Continuous-Discrete Filtering; Kolmogorov equation; Fokker-Planck equation; Dynamical Causal Modelling; Hierarchical dynamical models; SYSTEMS;
D O I
10.1117/12.883513
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reviews a simple solution to the continuous-discrete Bayesian nonlinear state estimation problem that has been proposed recently. The key ideas are analytic noise processes, variational Bayes, and the formulation of the problem in terms of generalized coordinates of motion. Some of the algorithms, specifically dynamic expectation maximization and variational filtering, have been shown to outperform existing approaches like extended Kalman filtering and particle filtering. A pedagogical review of the theoretical formulation is presented, with an emphasis on concepts that are not as widely known in the filtering literature. We illustrate the appliction of these concepts using a numerical example.
引用
收藏
页数:12
相关论文
共 18 条
[1]  
Bain A, 2009, STOCH MOD APPL PROBA, V60, P1, DOI 10.1007/978-0-387-76896-0_1
[2]  
BALAJI B, 2009, PMC PHYS A, V3
[3]   Estimation of indirectly observable Langevin states: path integral solution using statistical physics methods [J].
Balaji, Bhashyam .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[4]   Continuous-Discrete Path Integral Filtering [J].
Balaji, Bhashyam .
ENTROPY, 2009, 11 (03) :402-430
[5]  
Bar-Shalom Y., 2004, Estimation with applications to tracking and navigation: Theory algorithms and software
[6]  
Cox D., 2017, The theory of stochastic processes
[7]  
Daum F., 2003, Aerospace Conference, 2003, V4, P8
[8]  
Feynman R. P., 2010, Quantum Mechanics and Path Integrals, DOI 10.1063/1.3048320
[9]   DEM: A variational treatment of dynamic systems [J].
Friston, K. J. ;
Trujillo-Barreto, N. ;
Daunizeau, J. .
NEUROIMAGE, 2008, 41 (03) :849-885
[10]   Variational filtering [J].
Friston, K. J. .
NEUROIMAGE, 2008, 41 (03) :747-766