Influence of gaseous ozone in peri-implantitis: bactericidal efficacy and cellular response. An in vitro study using titanium and zirconia

被引:38
作者
Hauser-Gerspach, Irmgard [1 ,2 ]
Vadaszan, Jasminka [2 ]
Deronjic, Irma [3 ]
Gass, Catiana [3 ]
Meyer, Juerg [2 ]
Dard, Michel [4 ]
Waltimo, Tuomas [2 ]
Stuebinger, Stefan [3 ]
Mauth, Corinna [4 ]
机构
[1] Univ Kliniken Zahnmed, Inst Praventivzahnmed & Orale Mikrobiol, CH-4056 Basel, Switzerland
[2] Univ Basel, Sch Dent Med, Inst Prevent Dent & Oral Microbiol, CH-4056 Basel, Switzerland
[3] Univ Zurich, Competence Ctr Appl Biotechnol & Mol Med, CH-8057 Zurich, Switzerland
[4] Inst Straumann AG, CH-4052 Basel, Switzerland
关键词
Peri-implantitis; Titanium; Zirconia Gaseous ozone; Decontamination; DENTAL IMPLANT; ENTEROCOCCUS-FAECALIS; NONSURGICAL TREATMENT; SURFACE-ROUGHNESS; ORAL IMPLANTS; CELLS MG63; BIOFILM; OSTEOBLASTS; DENTISTRY; DIFFERENTIATION;
D O I
10.1007/s00784-011-0603-2
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Dental implants are prone to bacterial colonization which may result in bone destruction and implant loss. Treatments of peri-implant disease aim to reduce bacterial adherence while leaving the implant surface intact for attachment of bone-regenerating host cells. The aims of this study were to investigate the antimicrobial efficacy of gaseous ozone on bacteria adhered to various titanium and zirconia surfaces and to evaluate adhesion of osteoblast-like MG-63 cells to ozone-treated surfaces. Saliva-coated titanium (SLA and polished) and zirconia (acid etched and polished) disks served as substrates for the adherence of Streptococcus sanguinis DSM20068 and Porphyromonas gingivalis ATCC33277. The test specimens were treated with gaseous ozone (140 ppm; 33 mL/s) for 6 and 24 s. Bacteria were resuspended using ultrasonication, serially diluted and cultured. MG-63 cell adhesion was analyzed with reference to cell attachment, morphology, spreading, and proliferation. Surface topography as well as cell morphology of the test specimens were inspected by SEM. The highest bacterial adherence was found on titanium SLA whereas the other surfaces revealed 50-75% less adherent bacteria. P. gingivalis was eliminated by ozone from all surfaces within 24 s to below the detection limit (a parts per thousand yen99.94% reduction). S. sanguinis was more resistant and showed the highest reduction on zirconia substrates (> 90% reduction). Ozone treatment did not affect the surface structures of the test specimens and did not influence osteoblastic cell adhesion and proliferation negatively. Titanium (polished) and zirconia (acid etched and polished) had a lower colonization potential and may be suitable material for implant abutments. Gaseous ozone showed selective efficacy to reduce adherent bacteria on titanium and zirconia without affecting adhesion and proliferation of osteoblastic cells. This in vitro study may provide a solid basis for clinical studies on gaseous ozone treatment of peri-implantitis and revealed an essential base for sufficient tissue regeneration.
引用
收藏
页码:1049 / 1059
页数:11
相关论文
共 46 条
[41]   The gene-expression and phenotypic response of hFOB 1.19 osteoblasts to surface-modified titanium and zirconia [J].
Setzer, Bernhard ;
Baechle, Maria ;
Metzger, Marc C. ;
Kohal, Ralf J. .
BIOMATERIALS, 2009, 30 (06) :979-990
[42]  
Stoll R, 2008, QUINTESSENCE INT, V39, P231
[43]  
Stübinger S, 2006, QUINTESSENCE INT, V37, P353
[44]   Effect of material characteristics and/or surface topography on biofilm development [J].
Teughels, Wim ;
Van Assche, Nele ;
Sliepen, Isabelle ;
Quirynen, Marc .
CLINICAL ORAL IMPLANTS RESEARCH, 2006, 17 :68-81
[45]   Early colonization of dental implants by putative periodontal pathogens in partially edentulous patients [J].
van Winkelhoff, AJ ;
Goené, RJ ;
Benschop, C ;
Folmer, T .
CLINICAL ORAL IMPLANTS RESEARCH, 2000, 11 (06) :511-520
[46]   Requirement for both micron- and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography [J].
Zhao, G. ;
Raines, A. L. ;
Wieland, M. ;
Schwartz, Z. ;
Boyan, B. D. .
BIOMATERIALS, 2007, 28 (18) :2821-2829