Infinitesimal deformations of the lie superalgebra Ln,m

被引:16
作者
Gomez, J. R. [2 ]
Khakimdjanov, Yu. [3 ]
Navarro, R. M. [1 ]
机构
[1] Univ Extremadura, Dept Matemat, Caceres, Spain
[2] Univ Seville, Dpto Matemat Aplicada 1, Seville, Spain
[3] Univ Haute Alsace, Lab Math & Applicat, Mulhouse, France
关键词
Lie superalgebras; cohomology; deformation; nilpotent; filiform;
D O I
10.1016/j.geomphys.2008.02.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we continue the study of the infinitesimal deformations of the Lie superalgebra L-n,L-m that we have started in [M. Bordemann, J.R. Gomez, Yu. Khakimdjanov, R.M. Navarro, Some deformations of nilpotent Lie superalgebras, J. Geom. Phys. 57 (2007) 1391-1403]. These deformations allow us to obtain all filiform Lie superalgebras. In [M. Bordemann, J.R. Gomez, Yu. Khakimdjanov, R.M. Navarro, Some deformations of nilpotent Lie superalgebras, J. Geom. Phys. 57 (2007) 1391-1403], we gave a method that allows us to determine the dimension of the space of deformations of type Hom(S-2(L-1(n,m)).L-0(n,m)) and we calculated a basis of the aforementioned space of deformations for n >= 2m - 1. In this paper, we conclude the study by developing a method to calculate a basis of the space of deformations Hom(S-2(L-1(n,m)).L-0(n,m)) for the rest of possibilities n < 2m - 1. We particularize for even n and also give an algorithm for computing a cocycle basis for the given concrete dimensions n and in. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:849 / 859
页数:11
相关论文
共 10 条
[1]   Some deformations of nilpotent Lie superalgebras [J].
Bordemann, M. ;
Gomez, J. R. ;
Khakimdjanov, Yu. ;
Navarro, R. M. .
JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (05) :1391-1403
[2]  
Fuks D.B., 1986, Cohomology of Infinite-Dimensional Lie Algebras
[3]   Some problems concerning to nilpotent Lie superalgebras [J].
Gómez, JR ;
Khakimdjanov, Y ;
Navarro, RM .
JOURNAL OF GEOMETRY AND PHYSICS, 2004, 51 (04) :473-486
[4]  
Goze M., 1989, Journal of Geometry and Physics, V6, P583, DOI 10.1016/0393-0440(89)90027-2
[5]   Classification of nilpotent Lie superalgebras of dimension five. I [J].
Hegazi, A .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1999, 38 (06) :1735-1739
[6]  
HEGAZI A, 2000, PANAMER MATH J, V10, P75
[7]  
KHAKIMDJANOV Y, 2005, INT C OP ALG QUANT P, P207
[8]   Cohomology of Lie superalgebras and their generalizations [J].
Scheunert, M ;
Zhang, RB .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (09) :5024-5061
[9]  
Scheunert M., 1979, LECT NOTES MATH, V716
[10]  
VERGNE M, 1970, B SOC MATH FR, V98, P81