Reactivity of CO2 traps in aerogel-wollastonite composites

被引:8
作者
Santos, Alberto [2 ]
Ajbary, Mohamed [3 ]
Toledo-Fernandez, Jose A. [3 ]
Morales-Florez, Victor [1 ]
Kherbeche, Abdelhak [4 ]
Esquivias, Luis [1 ]
机构
[1] Univ Seville, Inst Ciencias Mat Sevilla CSIC, Fac Fis, Dept Fis Mat Condensada, E-41012 Seville, Spain
[2] Univ Cadiz, CASEM, Dept Ciencias Tierra, Cadiz, Spain
[3] Univ Cadiz, Fac Ciencias, Dept Fis Mat Condensada, Cadiz, Spain
[4] Univ Sidi Mohamed Ben Abdellah, Ecole Super Technol, Fes, Morocco
关键词
aerogel; wollastonite; CO2; sequestration; passivating layer; carbonation; porous matrix;
D O I
10.1007/s10971-008-1719-y
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Synthetic wollastonite has been used as the active phase embedded into two different silica aerogel composites. These composites are different in respect of the route used for the synthesis of the wollastonite powder. Texture and composition of both types of composite have been characterized. In addition, several factors (pH, reaction time, CO2 saturation, etc.) that could help to optimize the carbonation process at room temperature and pressure have been studied. Under the same conditions, both composites confirm previous results showing efficiencies as CO2 sequesters between 80% and 100% in only 15 min of gas flow. The textural characteristics of the aerogel, together with the grain size of the synthetic wollastonite powder, not only increase the speed of the reaction, but also inhibit the appearance of a passivating layer on the surface of the wollastonite grains attacked by the CO2. This is an outstanding feature as it insists on a cutting-edge challenge of the CO2 research: its economical availability.
引用
收藏
页码:224 / 230
页数:7
相关论文
共 15 条
[1]   Carbon sequestration via aqueous olivine mineral carbonation:: Role of passivating layer formation [J].
Bearat, Hamdallah ;
McKelvy, Michael J. ;
Chizmeshya, Andrew V. G. ;
Gormley, Deirdre ;
Nunez, Ryan ;
Carpenter, R. W. ;
Squires, Kyle ;
Wolf, George H. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (15) :4802-4808
[2]   Structural models of dense aerogels [J].
Esquivias, L ;
Rodriguez-Ortega, J ;
Barrera-Solano, C ;
De la Rosa-Fox, N .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1998, 225 (1-3) :239-243
[3]   Mercury porosimetry applied to sono-aerogels [J].
Esquivias, L ;
De La Rosa-Fox, N .
JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2003, 26 (1-3) :651-655
[4]   Geochemical potentiality of glauconitic shelf sediments for sequestering atmospheric CO2 of anthropogenic origin [J].
Fernández-Bastero, S ;
García, T ;
Santos, A ;
Gago-Duport, L .
CIENCIAS MARINAS, 2005, 31 (04) :593-615
[5]   Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process [J].
Huijgen, Wouter J. J. ;
Witkamp, Geert-Jan ;
Comans, Rob N. J. .
CHEMICAL ENGINEERING SCIENCE, 2006, 61 (13) :4242-4251
[6]   Coherent expanded aerogels and jellies. [J].
Kistler, SS .
NATURE, 1931, 127 :741-741
[7]   Absorption and fixation of carbon dioxide by rock weathering [J].
Kojima, T ;
Nagamine, A ;
Ueno, N ;
Uemiya, S .
ENERGY CONVERSION AND MANAGEMENT, 1997, 38 :S461-S466
[8]  
NICOLAON GA, 1968, B SOC CHIM FR, P1900
[9]   Carbon dioxide sequestration by direct mineral carbonation: process mineralogy of feed and products [J].
O'Connor, WK ;
Dahlin, DC ;
Rush, GE ;
Dahlin, CL ;
Collins, WK .
MINERALS & METALLURGICAL PROCESSING, 2002, 19 (02) :95-101
[10]   Fast CO2 sequestration by aerogel composites [J].
Santos, Alberto ;
Ajbary, Mohamed ;
Kherbeche, Abdelhak ;
Pinero, Manuel ;
De la Rosa-Fox, N. ;
Esquivias, Luis .
JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2008, 45 (03) :291-297