Complexity of two-variable Dependence Logic and IF-Logic

被引:4
作者
Kontinen, Juha [1 ]
Kuusisto, Antti [2 ]
Lohmann, Peter [3 ]
Virtema, Jonni [2 ]
机构
[1] Univ Helsinki, FIN-00014 Helsinki, Finland
[2] Univ Tampere, FIN-33101 Tampere, Finland
[3] Leibniz Univ Hannover, Hannover, Germany
来源
26TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2011) | 2011年
基金
芬兰科学院;
关键词
dependence logic; independence-friendly logic; two-variable logic; decidability; complexity; satisfiability; expressivity; 1ST-ORDER LOGIC; 2; VARIABLES; QUANTIFIERS;
D O I
10.1109/LICS.2011.14
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the two-variable fragments D-2 and IF2 of dependence logic and independence-friendly logic. We consider the satisfiability and finite satisfiability problems of these logics and show that for D-2, both problems are NEXPTIME-complete, whereas for IF2, the problems are Pi(0)(1) and Sigma(0)(1)-complete, respectively. We also show that D-2 is strictly less expressive than IF2 and that already in D-2, equicardinality of two unary predicates and infinity can be expressed (the latter in the presence of a constant symbol). An extended version of this publication can be found at arxiv.org.
引用
收藏
页码:289 / 298
页数:10
相关论文
共 33 条
[21]  
Kieronski E, 2005, IEEE S LOG, P448
[22]  
Lohmann P, 2010, LECT NOTES COMPUT SC, V6247, P411, DOI 10.1007/978-3-642-15205-4_32
[23]  
Mann A. L., INDEPENDENC IN PRESS
[24]  
Mortimer M., 1975, MATH LOGIC QUART, V21, P135
[25]  
PACHOLSKI L., 1997, LICS, P318
[26]   Complexity of the Two-Variable Fragment with Counting Quantifiers [J].
Ian Pratt-Hartmann .
Journal of Logic, Language and Information, 2005, 14 (3) :369-395
[27]  
Scott Dana, 1962, Journal of Symbolic Logic, V27, P74
[28]   Model-theoretic and Computational Properties of Modal Dependence Logic [J].
Sevenster, Merlijn .
JOURNAL OF LOGIC AND COMPUTATION, 2009, 19 (06) :1157-1173
[29]  
Turing AM, 1937, P LOND MATH SOC, V42, P230, DOI 10.1112/plms/s2-42.1.230
[30]  
Vaananen J., 2007, LONDON MATH SOC STUD