Complexity of two-variable Dependence Logic and IF-Logic

被引:4
作者
Kontinen, Juha [1 ]
Kuusisto, Antti [2 ]
Lohmann, Peter [3 ]
Virtema, Jonni [2 ]
机构
[1] Univ Helsinki, FIN-00014 Helsinki, Finland
[2] Univ Tampere, FIN-33101 Tampere, Finland
[3] Leibniz Univ Hannover, Hannover, Germany
来源
26TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2011) | 2011年
基金
芬兰科学院;
关键词
dependence logic; independence-friendly logic; two-variable logic; decidability; complexity; satisfiability; expressivity; 1ST-ORDER LOGIC; 2; VARIABLES; QUANTIFIERS;
D O I
10.1109/LICS.2011.14
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the two-variable fragments D-2 and IF2 of dependence logic and independence-friendly logic. We consider the satisfiability and finite satisfiability problems of these logics and show that for D-2, both problems are NEXPTIME-complete, whereas for IF2, the problems are Pi(0)(1) and Sigma(0)(1)-complete, respectively. We also show that D-2 is strictly less expressive than IF2 and that already in D-2, equicardinality of two unary predicates and infinity can be expressed (the latter in the presence of a constant symbol). An extended version of this publication can be found at arxiv.org.
引用
收藏
页码:289 / 298
页数:10
相关论文
共 33 条
[1]  
Abramsky S., 2007, TEXTS LOGIC GAMES, V1, P11
[2]  
Berger R, 1966, MEMOIRS AM MATH SOC
[3]  
Bradfield J, 2005, LECT NOTES COMPUT SC, V3634, P355, DOI 10.1007/11538363_25
[4]   Equivalence and quantifier rules for logic with imperfect information [J].
Caicedo, Xavier ;
Dechesne, Francien ;
Janssen, Theo M. V. .
LOGIC JOURNAL OF THE IGPL, 2009, 17 (01) :91-129
[5]  
Church A., 1936, J. of Symbolic Logic, V1, P40, DOI DOI 10.2307/2269326
[6]  
ENDERTON HB, 1970, Z MATH LOGIK, V16, P393
[7]   First-order logic with two variables and unary temporal logic [J].
Etessami, K ;
Vardi, MY ;
Wilke, T .
INFORMATION AND COMPUTATION, 2002, 179 (02) :279-295
[8]  
Gradel E, 1997, LECT NOTES COMPUT SC, V1200, P249, DOI 10.1007/BFb0023464
[9]   On the decision problem for two-variable first-order logic [J].
Gradel, E ;
Kolaitis, PG ;
Vardi, MY .
BULLETIN OF SYMBOLIC LOGIC, 1997, 3 (01) :53-69
[10]   On logics with two variables [J].
Grädel, E ;
Otto, M .
THEORETICAL COMPUTER SCIENCE, 1999, 224 (1-2) :73-113