A toy model of fractal glioma development under RF electric field treatment

被引:12
作者
Iomin, A. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
关键词
FRACTIONAL CALCULUS; MIGRATION; PROLIFERATION; INVASION;
D O I
10.1140/epje/i2012-12042-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A toy model for glioma treatment by a radio frequency electric field is suggested. This low-intensity, intermediate-frequency alternating electric field is known as the tumor-treating field (TTF). In the framework of this model the efficiency of this TTF is estimated, and the interplay between the TTF and the migration-proliferation dichotomy of cancer cells is considered. The model is based on a modification of a comb model for cancer cells, where the migration-proliferation dichotomy becomes naturally apparent. Considering glioma cancer as a fractal dielectric composite of cancer cells and normal tissue cells, a new effective mechanism of glioma treatment is suggested in the form of a giant enhancement of the TTF. This leads to the irreversible electroporation that may be an effective non-invasive method of treating brain cancer.
引用
收藏
页数:6
相关论文
共 41 条
[1]  
ARKHINCHEEV VE, 1991, ZH EKSP TEOR FIZ+, V100, P292
[2]   Superdiffusion on a comb structure [J].
Baskin, E ;
Iomin, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (12) :120603-1
[3]   Geometrical enhancement of the electric field: Application of fractional calculus in nanoplasmonics [J].
Baskin, E. ;
Iomin, A. .
EPL, 2011, 96 (05)
[4]   Electrostatics in fractal geometry: Fractional calculus approach [J].
Baskin, Emmanuel ;
Iomin, Alexander .
CHAOS SOLITONS & FRACTALS, 2011, 44 (4-5) :335-341
[5]  
Bateman H., 1955, Higher transcendental functions, California Institute of technology. Bateman Manuscript project
[6]  
ben-Avraam D., 2000, DIFFUSION REACTIONS
[7]   OPTICS OF FRACTAL CLUSTERS SUCH AS SMOKE [J].
BERRY, MV ;
PERCIVAL, IC .
OPTICA ACTA, 1986, 33 (05) :577-591
[8]  
Bohren C. F., 1998, ABSORPTION SCATTERIN, DOI 10.1002/9783527618156
[9]   A model of cell migration within the extracellular matrix based on a phenotypic switching mechanism [J].
Chauviere, A. ;
Preziosi, L. ;
Byrne, H. .
MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2010, 27 (03) :255-281
[10]   Migration and proliferation dichotomy in tumor-cell invasion [J].
Fedotov, Sergei ;
Iomin, Alexander .
PHYSICAL REVIEW LETTERS, 2007, 98 (11)