Bessel functions, heat kernel and the conical Kahler-Ricci flow

被引:26
作者
Chen, Xiuxiong [1 ]
Wang, Yuanqi [2 ]
机构
[1] SUNY Stony Brook, Dept Math, Stony Brook, NY USA
[2] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
关键词
Local existence conic Ricci flow; Bessel functions; Heat kernel; Schauder estimates; EINSTEIN METRICS; SINGULARITIES;
D O I
10.1016/j.jfa.2015.01.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following Donaldson's openness theorem on deforming a conical Kahler-Einstein metric, we prove a parabolic Schauder-type estimate with respect to conical metrics. As a corollary, we show that the conical Kahler-Ricci flow exists for short time. The key is to establish the relevant heat kernel estimates, where we use the Weber formula on Bessel function of the second kind and Carslaw's heat kernel representation in [8]. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:551 / 632
页数:82
相关论文
共 49 条
[1]  
[Anonymous], ARXIV12056214
[2]  
[Anonymous], 1998, GRADUATE STUD MATH
[3]  
[Anonymous], PUBL MATH
[4]  
[Anonymous], ARXIV09092391
[5]  
[Anonymous], ARXIV12074839
[6]  
[Anonymous], ANN MATH IN PRESS
[7]  
[Anonymous], ARXIV10113976
[8]  
[Anonymous], DISCUSSION KAHLER EI
[9]  
AUBIN T, 1982, GRUNDLEHREN MATH WIS, V252
[10]   Ricci Flat Kahler Metrics with Edge Singularities [J].
Brendle, Simon .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (24) :5727-5766